Skip to main content
Log in

Heat transfer in laminar entrance region of a flat channel for the temperature boundary condition of the third kind

Wärmeübertragung bei der laminaren Einlaufströmung im ebenen Spalt mit der Randbedingung dritter Art

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

To explore the influence of the developing flow in a flat channel on the laminar forced convection heat transfer, the non-linear momentum and the linear energy equation are solved successively by employing the Galerkin-Kantorowich method of variational calculus. Assuming constant fluid properties, negligible axial diffusion and temperature boundary condition of the third kind, semi analytic solution for velocity and temperature is derived. The local Nusselt numbers are tabulated for various values of Biot and Prandtl number.

Zusammenfassung

Um den Einfluß der sich ausbildenden Strömung auf die laminare erzwungene Konvektion in einem ebenen Spalt zu untersuchen, werden die nicht-lineare Impuls- und lineare Energiegleichung mit dem Galerkin-Kantorowitsch-Verfahren der Variationsrechnung hintereinander gelöst. Unter der Annahme der konstanten Stoffwerte, der vernachlässigbaren axialen Diffusion und der Temperatur-Randbedingung dritter Art wird eine semi analytische Lösung für die Geschwindigkeit und Temperatur abgeleitet. Die lokalen Nusselt-Zahlen sind für verschiedene Biot- und Prandtl-Zahlen in den Tabellen wiedergegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

channel cross section

Bi:

Biot number, Eq. (5)

F:

a vector, Eq. (7)

Nu:

Nusselt number, Eq. (27)

Pe:

Peclet number, Eq. (5)

Pr:

Prandtl number, Eq. (5)

Re:

Reynolds number, Eq. (5)

T:

temperature

c:

half channel height, Fig. 1

cp :

specific heat at constant pressure

dh :

hydraulic diameter

f:

a function, Eq. (7)

h:

heat transfer coefficient, Eq. (27)

k:

over-all heat transfer coefficient, Eq. (4)

p:

pressure

s:

characteristic value, Eq. (7)

v:

velocity

x, y, z:

cartesian coordinate

β:

a parameter, Eq. (6)

λ:

thermal conductivity

ν:

kinematic viscosity

ρ:

density

[ ]:

matrix

{ }:

column vector

a:

ambient

d:

fully developed

e:

entrance value at x=0

ent:

entrance region, Eq. (19)

i, j:

running index

inf:

asymptotic value at x → ∞

m:

mean value

w:

wall

x, y, z:

cartesian coordinate direction

−:

dimensionless quantity, Eq. (5)

Literature

  1. Sparrow, E.M.: Analysis of laminar forced convection heat transfer in entrance region of flat rectangular ducts. National Advisory Committee for Aeronautics, Washington, Technical Note 3331 (Jan. 1955)

    Google Scholar 

  2. Stephan, K.: Wärmeübergang und Druckabfall bei nicht ausgebildeter Laminarströmung in Rohren und in ebenen Spalten. Chemie-Ing. Techn.31 (1959) 773–778

    Google Scholar 

  3. Hwang, C.L.; Fan, L.T.: Finite difference analysis of forced convection heat transfer in entrance region of a flat duct. Appl. Sci. Res. A13 (1964) 401–422

    Google Scholar 

  4. Siegel, R.; Sparrow, E.M.: Simultaneous development of velocity and temperature distributions in a flat duct with uniform wall heating. A.I. Ch. E. Journal5 (1959) 73–75

    Google Scholar 

  5. Han, L.S.: Simultaneous developments of temperature and velocity profiles in flat ducts. Int. Development in Heat Transfer, Part III, Am. Soc. Mech. Engrs. New York (1961) 591–597

    Google Scholar 

  6. Javeri, V.: Bestimmung der laminaren Geschwindigkeits- und Temperaturfelder im thermischen Einlaufgebiet eines MHD-Kanals mit dem Kantorowitsch-Verfahren. Diss. TU Berlin (1972)

  7. Kantorowitsch, L.W.; Krylow, W.: Näherungsverfahren der höheren Analysis, Kap. 4. Berlin: VEB Deutscher Verlag der Wissenschaften (1956)

    Google Scholar 

  8. Krajewski, B.: Ein direktes Variationsverfahren zur Behandlung der Wärmeübertragungsprobleme für erzwungene Konvektion. Int. J. Heat Mass Transfer16 (1973) 469–483

    Google Scholar 

  9. Han, L.S.: Hydrodynamic entrance lengths for incompressibel laminar flow in rectangular ducts, J. Appl. Mech.27 (Spt. 1960) 403–409

    Google Scholar 

  10. Sparrow, E.M.; Lin, S.H.; Lundgren, T.S.: Flow development in the hydrodynamic entrance region of tubes and ducts. Physics of Fluids7 (March 1964) 338–347

    Google Scholar 

  11. Javeri, V.: Magnetohydrodynamic channel entrance flow analysis with the Kantorowich method. Institut für Kerntechnik, Techn. Univ. Berlin, TUBIK47 (1975)

    Google Scholar 

  12. Arpaci, V.S.: Conduction Heat Transfer. Reading: Addison-Wesley (1966)

    Google Scholar 

  13. Kays, W.M.: Convective Heat and Mass Transfer. New York: McGraw-Hill (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javeri, V. Heat transfer in laminar entrance region of a flat channel for the temperature boundary condition of the third kind. Warme- und Stoffubertragung 10, 137–143 (1977). https://doi.org/10.1007/BF01682707

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01682707

Keywords