Skip to main content
Log in

Cellulose digestion inMonochamus marmorator Kby. (Coleoptera: Cerambycidae): Role of acquired fungal enzymes

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Larvae of the balsam fir sawyer,Monochamus marmorator Kby. (Coleoptera, Cerambycidae), contain midgut digestive enzymes active against hemicellulose and cellulose. Cellulases from larvae fed on balsam fir wood infected with the fungus,Trichoderma harzianum Rifai (Deuteromycetes, Moniliales, Moniliaceae), were found to be identical to those of the cellulase complex produced by this fungus when compared using chromatography, electrophoresis, and isofocusing. When larvae are maintained on a fungus-free diet, their midgut fluids lack cellulolytic activity, and they are unable to digest cellulose. Cellulolytic capacity can be restored by feeding the larvae wood permeated by fungi. We conclude that the enzymes which enableM. marmorator larvae to digest cellulose are not produced by the larvae. Instead, the larvae acquire the capacity to digest cellulose by ingesting active fungal cellulases while feeding in fungus-infected wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, G. 1942. Untersuchungen über die Ernahrungsphysiologie der Hausbockkäfer-larven.Z. Vergl. Physiol. 29:315–388.

    Google Scholar 

  • Becker, G. 1968. Einflusz von Ascomyceten und Fungi Imperfecti auf Larven vonHylotrupes bajulus (L.).Mater. Organ. 3:229–240.

    Google Scholar 

  • Bernfeld, P. 1955. Amylases, α and β, pp. 149–150,in S.P. Colowick and N.O. Kaplan (eds.). Methods in Enzymology, Vol. 1. Academic Press, New York.

    Google Scholar 

  • Bletchly, J.D. 1953. The influence of decay in timber on susceptibility to attack by the common furniture beetle,Anobium punctatum DeG.Ann. Appl. Biol. 40:218–221.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72:248–254.

    Google Scholar 

  • Buchner, P. 1928. Holznahrung und Symbiose. Springer Verlag, Berlin.

    Google Scholar 

  • Campbell, W.G. 1929. The chemical aspect of the destruction of oakwood by powder-post and death-watch beetles:Lyctus species andXestobium species.Biochem. J. 23:1290–1293.

    Google Scholar 

  • Campbell, W.G. 1941. The relationship between nitrogen metabolism and the duration of the larval stage of the death-watch beetle (Xestobium rufovillosum DeG.) reared in wood decayed by fungi.Biochem. J. 35:1200–1208.

    Google Scholar 

  • Campbell, W.G., andBryant, S.A. 1940. A chemical study of the bearing of decay byPhellinus cryptarum Karst, and other fungi on the destruction of wood by the death-watch beetle (Xestobium rufovillosum DeG.).Biochem. J. 34:1404–1414.

    Google Scholar 

  • Chararas, C. 1981. Étude du comportement nutritionnel et de la digestion chez certains Cerambycidae xylophages.Mater. Org. 16:207–264.

    Google Scholar 

  • Chararas, C., Courtois, J.E., Le Fay, A., andThuillier, A. 1971. Biologie, évolution et nutrition dePhoracantha semipunctata, Coléoptère Cerambycidae spécifique desEucalyptus.C.R. Soc. Biol. 165:1565–1568.

    Google Scholar 

  • Côté, W.A. 1977. Wood ultrastructure in relation to chemical composition.Recent Adv. Phytochem. 11:45–78.

    Google Scholar 

  • Dajoz, R. 1968. La digestion du bois par les insectes xylophages.Ann. Biol. 7:1–38.

    Google Scholar 

  • Fisher, R.C. 1940. Studies of the biology of the death-watch beetle,Xestobium rufovillosum DeG.Ann. Appl. Biol. 27:545–557.

    Google Scholar 

  • Fisher, R.C. 1941. Studies of the biology of the death-watch beetle,Xestobium rufovillosum DeG.Ann. Appl. Biol. 28:244–260.

    Google Scholar 

  • Kukor, J.J., andMartin, M.M. 1983. Acquisition of digestive enzymes by siricid woodwasps from their fungal symbiont.Science 220:1161–1163.

    Google Scholar 

  • Leach, J.G., Orr, L.W., andChristensen, C. 1937. The interrelationships of bark beetles and blue-staining fungi in felled Norway pine timber.J. Agric. Res. 49:315–341.

    Google Scholar 

  • Linsley, E.G. 1959. Ecology of Cerambycidae.Annu. Rev. Entomol. 4:99–138.

    Google Scholar 

  • Mansour, K., andMansour-Bek, J.J. 1934a. The digestion of wood by insects and the supposed role of microorganisms.Biol. Rev. 9:363–382.

    Google Scholar 

  • Mansour, K., andMansour-Bek, J.J. 1934b. On the digestion of wood by insects.J. Exp. Biol. 11:243–256.

    Google Scholar 

  • Martin, M.M. 1983. Cellulose digestion in insects.Comp. Biochem. Physiol. 75A:313–324.

    Google Scholar 

  • Martin, M.M. 1984. The role of ingested enzymes in the digestive processes of insects, pp. 155–172,in J.M. Anderson, A.D.M. Rayner, and D. Walton (eds.). Animal-Microbial Interactions. Cambridge University Press, Cambridge.

    Google Scholar 

  • Martin, M.M., andMartin, J.S. 1978. Cellulose digestion in the midgut of the fungus-growing termiteMacrotermes natalensis: The role of acquired digestive enzymes.Science 199:1453–1455.

    Google Scholar 

  • Martin, M.M., andMartin, J.S. 1979. The distribution and origins of the cellulolytic enzymes of the higher termite,Macrotermes natalensis.Physiol. Zool. 52:11–21.

    Google Scholar 

  • Martin, M.M., Martin, J.S., Kukor, J.J., andMerritt, R.W. 1980. The digestion of protein and carbohydrate by the stream detritivore,Tipula abdominalis (Diptera: Tipulidae).Oecologia 46:360–364.

    Google Scholar 

  • Parkin, E.A. 1940. The digestive enzymes of some wood-boring beetle larvae.J. Exp. Biol. 17:364–377.

    Google Scholar 

  • Piccioni, R., Bellemare, G., andChua, N.H. 1982. Methods of polyacrylamide gel electrophoresis in the analysis and preparation of plant polypeptides, pp. 985–1014,in M. Edelman, R.B. Hallick, and N.H. Chua (eds.). Methods in Chloroplast Molecular Biology. Elsevier, Amsterdam.

    Google Scholar 

  • Rapson, W.H. 1963. Cellulose from bleached wood pulp, pp. 22–24,in R.L. Whistler (ed.). Methods in Carbohydrate Chemistry, Vol. 3. Academic Press, New York.

    Google Scholar 

  • Updegraff, D.M. 1969. Semimicro determination of cellulose in biological materials.Anal. Biochem. 32:420–424.

    Google Scholar 

  • Uvarov, B.P. 1929. Insect nutrition and metabolism.Trans. Entomol. Soc. London 76:255–343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukor, J.J., Martin, M.M. Cellulose digestion inMonochamus marmorator Kby. (Coleoptera: Cerambycidae): Role of acquired fungal enzymes. J Chem Ecol 12, 1057–1070 (1986). https://doi.org/10.1007/BF01638996

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01638996

Key words