Skip to main content
Log in

Time course and frequency dependence of synaptic vesicle depletion and recovery in electrically stimulated sympathetic ganglia

  • Published:
Journal of Neurocytology

Summary

The mammalian superior cervical sympathetic ganglion has been extensively used to study the kinetics of ACh metabolism and release. The present investigation examined the time course of changes in the number of synaptic vesicles and abundance of plasma membrane at preganglionic nerve terminals using stimulation protocols similar to those used in previous biochemical and electrophysiological studies. Continuous stimulation of the preganglionic trunk to the cat superior cervical ganglionin vivo produced an initially rapid fall in the number of clear synaptic vesicles followed by a subsequent plateau. Reciprocal changes in plasma membrane occurred with a similar time course. The plateau phase is interpreted as a steady-state where vesicle exocytosis is balanced by the rate of vesicle reformation from plasma membrane. During quiescent recovery, restoration of normal resting ultrastructure is initially rapid but slows with time as vesicle number and plasma membrane abundance approach pre-stimulation values, indicating that the rate of vesicle reformation at the end of stimulation is high and proportional to the number of vesicles incorporated into the plasma membrane. These results are interpreted as consistent with the ‘vesicle hypothesis’ of neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agoston, D. V., Kosh, J. W., Lisziewicz, J. &Whittaker, V. P. (1985) Separation of recycling and reserve synaptic vesicles from cholinergic nerve terminals of the myenteric plexus of guinea pig ileum.Journal of Neurochemistry 44, 299–305.

    Google Scholar 

  • Atwood, H. L., Lang, F. &Morin, W. A. (1972) Synaptic vesicles: selective depletion in crayfish excitatory and inhibitory axons.Science 176, 1353–5.

    Google Scholar 

  • Bennett, M. R. &McLachlan, E. M. (1972a) An electrophysiological analysis of the storage of acetylcholine in preganglionic nerve terminals.Journal of Physiology 221, 657–68.

    Google Scholar 

  • Bennett, M. R. &McLachlan, E. M. (1972b) An electrophysiological analysis of the synthesis of acetylcholine in preganglionic nerve terminals.Journal of Physiology 221, 669–82.

    Google Scholar 

  • Birks, R. I. (1974) The relationship of transmitter release and storage to fine structure in a sympathetic ganglion.Journal of Neurocytology 3, 133–60.

    Google Scholar 

  • Birks, R. I. &Fitch, S. J. G. (1974) Storage and release of acetylcholine in a sympathetic ganglion.Journal of Physiology 240, 125–34.

    Google Scholar 

  • Birks, R. I. &MacIntosh, F. C. (1961) Acetylcholine metabolism of a sympathetic ganglion.Canadian Journal of Biochemistry and Physiology 39, 787–827.

    Google Scholar 

  • Boyne, A. F., Bohan, T. P. &Williams, T. H. (1975) Changes in cholinergic synaptic vesicle populations and the ultrastructure of the nerve terminal membranes ofNarcine brasiliensis electric organ stimulated to fatiguein vivo.Journal of Cell Biology 67, 814–25.

    Google Scholar 

  • Brewer, P. A. &Lynch, K. (1986) Stimulation-associated changes in frog neuromuscular junctions. A quantitative ultrastructural comparison of rapid-frozen and chemically fixed nerve terminals.Neuroscience 17, 881–95.

    Google Scholar 

  • Buckley, K. M., Schweitzer, E. S., Miljanich, G. P., Clift-O'Grady, L., Kushner, P. D., Reichardt, L. F. &Kelly, R. B. (1983) A synaptic vesicle antigen is restricted to the junctional region of the presynaptic plasma membrane.Proceedings of the National Academy of Sciences USA 80, 7342–6.

    Google Scholar 

  • Ceccarelli, B., Grohovaz, F. &Hurlbut, W. P. (1979a) Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. I. Effects of black widow spider venom and Ca++-free solutions on the structure of the active zone.Journal of Cell Biology 81, 163–77.

    Google Scholar 

  • Ceccarelli, B., Grohovaz, F. &Hurlbut, W. P. (1979b) Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. II. Effects of electrical stimulation and high potassium.Journal of Cell Biology 81, 178–92.

    Google Scholar 

  • Ceccarelli, B. &Hurlbut, W. P. (1975) The effects of prolonged repetitive stimulation in hemicholinium on the frog neuromuscular junction.Journal of Physiology 247, 163–88.

    Google Scholar 

  • Ceccarelli, B. &Hurlbut, W. P. (1980a) Ca++-dependent recycling of synaptic vesicles at the frog neuromuscular junction.Journal of Cell Biology 87, 297–303.

    Google Scholar 

  • Ceccarelli, B. &Hurlbut, W. P. (1980b) Vesicle hypothesis of the release of quanta of acetylcholine.Physiological Reviews 60, 396–441.

    Google Scholar 

  • Ceccarelli, B., Hurlbut, W. P. &Mauro, A. (1972) Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation.Journal of Cell Biology 54, 30–8.

    Google Scholar 

  • Ceccarelli, B., Hurlbut, W. P. &Mauro, A. (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction.Journal of Cell Biology 57, 499–524.

    Google Scholar 

  • Collier, B. &MacIntosh, F. C. (1969) The source of choline for acetylcholine synthesis in a sympathetic ganglion.Canadian Journal of Physiology and Pharmacology 47, 127–35.

    Google Scholar 

  • Cooper, J. R., Bloom, F. E. &Roth, R. H. (1986)The Biochemical Basis of Neuropharmacology, p. 190. New York: Oxford Press.

    Google Scholar 

  • Dickinson-Nelson, A. &Reese, T. S. (1983) Structural changes during transmitter release at synapses in the frog sympathetic ganglion.Journal of Neuroscience 3, 42–52.

    Google Scholar 

  • Dunant, Y. (1986) On the mechanism of acetylcholine release.Progress in Neurobiology 26, 55–92.

    Google Scholar 

  • Elfvin, L.-G. (1963) The ultrastructure of the superior cervical sympathetic ganglion of the cat. II. The structure of the preganglionic end fibers and the synapses as studied by serial sections.Journal of Ultrastructure Research 8, 441–76.

    Google Scholar 

  • Fields, R. D. &Ellisman, M. H. (1985) Synaptic morphology and differences in sensitivity.Science 228, 197–9.

    Google Scholar 

  • Forsman, C. A. &Elfvin, L.-G. (1983) An ultrastructural study of presynaptic membrane specializations in sympathetic ganglia of 4-aminopyridine treated guinea pigs and rats.Brain Research 280, 355–60.

    Google Scholar 

  • Fried, R. C. &Blaustein, M. P. (1976) Synaptic vesicle recycling in synaptosomesin vitro.Nature 261, 255–6.

    Google Scholar 

  • Fried, R. C. &Blaustein, M. P. (1978) Retrieval and recycling of synaptic vesicle membrane in pinched-off nerve terminals (synaptosomes).Journal of Cell Biology 78, 685–700.

    Google Scholar 

  • Friesen, A. J. D. &Khatter, J. C. (1971a) Effect of stimulation on synaptic vesicles in the superior cervical ganglion of the cat.Experientia 27, 285–7.

    Google Scholar 

  • Friesen, A. J. D. &Khatter, J. C. (1971b) The effect of preganglionic stimulation on the acetylcholine and choline content of a sympathetic ganglion.Canadian Journal of Physiology and Pharmacology 49, 375–81.

    Google Scholar 

  • Fritz, L. C., Atwood, H. L. &Jahromi, S. S. (1980) Lobster neuromuscular junctions treated with black widow spider venom: correlation between ultrastructure and physiology.Journal of Neurocytology 9, 699–721.

    Google Scholar 

  • Haimann, C., Torri-Tarelli, F., Fesce, R. &Ceccarelli, B. (1985) Measurement of quantal secretion induced by ouabain and its correlation with depletion of synaptic vesicles.Journal of Cell Biology 101, 1953–65.

    Google Scholar 

  • Heuser, J., Katz, B. &Miledi, R. (1971) Structural and functional changes of frog neuromuscular junctions in high calcium solutions.Proceedings of the Royal Society of London, Series B 178, 407–15.

    Google Scholar 

  • Heuser, J. &Miledi, R. (1971) Effect of lanthanum ions on function and structure of frog neuromuscular junctions.Proceedings of the Royal Society of London, Series B 179, 247–60.

    Google Scholar 

  • Heuser, J. &Reese, T. S. (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction.Journal of Cell Biology 57, 315–44.

    Google Scholar 

  • Heuser, J. &Reese, T. S. (1981) Structural changes after transmitter release at the frog neuromuscular junction.Journal of Cell Biology 88, 564–80.

    Google Scholar 

  • Heuser, J., Reese, T. S., Dennis, M. J., Jan, Y., Jan, L. &Evans, L. (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release.Journal of Cell Biology 81, 275–300.

    Google Scholar 

  • Heuser, J., Reese, T. S. &Landis, D. M. D. (1974) Functional changes in frog neuromuscular junctions studied with freeze-fracture.Journal of Neurocytology 3, 109–31.

    Google Scholar 

  • Holtzman, E., Freeman, A. R. &Kashner, L. A. (1971) Stimulation-dependent alterations in peroxidase uptake at lobster neuromuscular junctions.Science 173, 733–6.

    Google Scholar 

  • Hubbard, J. I. &Kwanbunbumpen, S. (1968) Evidence for the vesicle hypothesis.Journal of Physiology 194, 407–20.

    Google Scholar 

  • Hubbard, J. I. &Laskowski, M. B. (1972) Spontaneous transmitter release and ACh sensitivity during glutaraldehyde fixation of rat diaphragm.Life Sciences 11, 781–5.

    Google Scholar 

  • Israel, M., Dunant, Y. &Manarache, R. (1979) The present status of the vesicle hypothesis.Progress in Neurobiology 13, 237–75.

    Google Scholar 

  • Israel, M. &Manarache, R. (1985) The release of acetylcholine: from a cellular towards a molecular mechanism.Biology of the Cell 55, 1–14.

    Google Scholar 

  • Jan, Y. N., Jan, L. Y. &Kuffler, S. W. (1979) A peptide as a possible transmitter in sympathetic ganglia of the frog.Proceedings of the National Academy of Sciences USA 76, 1501–5.

    Google Scholar 

  • Jones, S. F. &Kwanbunbumpen, S. (1970) The effects of nerve stimulation and hemicholinium on synaptic vesicles at the mammalian neuromuscular junction.Journal of Physiology 207, 31–50.

    Google Scholar 

  • Kadota, K. &Kadota, T. (1978) Detection of depolarization-induced coated vesicles within presynaptic terminals in cat sympathetic ganglia maintained at low temperature.Brain Research 151, 201–5.

    Google Scholar 

  • Kadota, T. &Kadota, K. (1982) Membrane retrieval by macropinocytosis in presynaptic terminals during transmitter release in cat sympathetic gangliain situ.Journal of Electron Microscopy 31, 73–80.

    Google Scholar 

  • Klein, R. L., Wilson, S. P., Dzielak, D. J., Yang, W.-H. &Viveros, O. H. (1982) Opioid peptides and noradrenaline co-exist in large dense-cored vesicles from sympathetic nerve.Neuroscience 7, 2255–61.

    Google Scholar 

  • Korneliussen, H. (1972) Ultrastructure of normal and stimulated motor end-plates.Zeitschrift für Zellforschung und mikroskopische Anatomie 130, 28–57.

    Google Scholar 

  • Korneliussen, H., Barstad, J. A. B. &Lilleheil, G. (1972) Vesicle hypothesis: effect of nerve stimulation on synaptic vesicles of motor end plates.Experientia 28, 1055–7.

    Google Scholar 

  • Lentz, T. L. &Chester, J. (1982) Synaptic vesicle recycling at the neuromuscular junction in the presence of a presynaptic membrane marker.Neuroscience 7, 9–20.

    Google Scholar 

  • Lynch, K. (1980) Stimulation-induced reduction of large dense core vesicle numbers in cholinergic motor nerve endings.Brain Research 194, 249–54.

    Google Scholar 

  • Marchbanks, R. M. (1975) The subcellular origin of the acetylcholine released at synapses.International Journal of Biochemistry 6, 303–12.

    Google Scholar 

  • McCandless, D. L., Zablocka-Esplin, B. &Esplin, D. W. (1971) Rates of transmitter turnover in the cat superior cervical ganglion estimated by electrophysiological techniques.Journal of Neurophysiology 34, 817–30.

    Google Scholar 

  • McLachlan, E. M. (1975a) An analysis of the release of acetylcholine from preganglionic nerve terminals.Journal of Physiology 245, 447–66.

    Google Scholar 

  • McLachlan, E. M. (1975b) Changes in statistical release parameters during prolonged stimulation of preganglionic nerve terminals.Journal of Physiology 253, 477–91.

    Google Scholar 

  • McLachlan, E. M. (1975c) Electrophysiological evidence for the second store of ACh in preganglionic nerve terminals.Brain Research 98, 373–76.

    Google Scholar 

  • Meshul, C. K. &Pappas, G. D. (1984) The relationship of pinocytosis and synaptic vesicles at the frog neuromuscular junction.Brain Research 290, 1–18.

    Google Scholar 

  • Miller, T. M. &Heuser, J. E. (1984) Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction.Journal of Cell Biology 98, 685–98.

    Google Scholar 

  • Model, P. G., Highstein, S. M. &Bennett, M. V. L. (1975) Depletion of vesicles and fatigue of transmission at a vertebrate central synapse.Brain Research 98, 209–28.

    Google Scholar 

  • Morris, J. F. &Nordmann, J. J. (1982) Membrane retrieval by vacuoles after exocytosis in the neural lobe of Brattleboro rats.Neuroscience 7, 1631–9.

    Google Scholar 

  • Parducz, A. (1986) Horseradish peroxidase uptake of the synaptic vesicles in the superior cervical ganglion of the cat.Brain Research 362, 375–8.

    Google Scholar 

  • Parducz, A. &Feher, O. (1970) Fine structural alterations of presynaptic endings in the superior cervical ganglion of the cat after exhausting preganglionic stimulation.Experientia 26, 629–30.

    Google Scholar 

  • Parducz, A., Feher, O. &Joo, F. (1971) Effects of stimulation and hemicholinium (HC-3) on the fine structure of nerve endings in the superior cervical ganglion of the cat.Brain Research 34, 61–72.

    Google Scholar 

  • Patzak, A. &Winkler, H. (1986) Exocytotic exposure and recycling of membrane antigens of chromaffin granules: ultrastructural evaluation after immunolabeling.Journal of Cell Biology 102, 510–15.

    Google Scholar 

  • Pecot-Dechavassine, M. (1983) Morphological evidence of tracer uptake at the active zones of stimulated frog neuromuscular junction.Experientia 39, 752–3.

    Google Scholar 

  • Perri, V., Sacchi, O., Raviola, E. &Raviola, G. (1972) Evaluation of the number and distribution of synaptic vesicles at cholinergic nerve endings after sustained stimulation.Brain Research 39, 526–9.

    Google Scholar 

  • Phillipe, E. &Tremblay, J. P. (1981)In vivo stimulation of a cholinergic synapse of the chick ciliary ganglion induces a reduction in the number of dense-core vesicles.Neuroscience Letters 24, 307–12.

    Google Scholar 

  • Pickel, V. M., Reis, D. J. &Leeman, S. E. (1977) Ultrastructural localization of substance P in neurons of rat spinal cord.Brain Research 122, 534–40.

    Google Scholar 

  • Politoff, A., Blitz, A. L. &Rose, S. (1975) Incorporation of acetylcholinesterase into synaptic vesicles is associated with blockade of synaptic transmission.Nature 256, 324–5.

    Google Scholar 

  • Potter, L. T. (1970) Synthesis, storage and release of14C-acetylcholine in isolated rat diaphragm muscles.Journal of Physiology 206, 145–66.

    Google Scholar 

  • Pysh, J. J. &Florek, G. F. (1979) Synaptic vesicle depletion in frog sympathetic ganglia stimulatedin vitro: demonstration by rapid freezing and electron microscopy.Abstracts of the Society for Neuroscience 5, 431.

    Google Scholar 

  • Pysh, J. J. &Wiley, R. G. (1972) Morphologic alterations of synapses in electrically stimulated superior cervical ganglia of the cat.Science 176, 191–3.

    Google Scholar 

  • Pysh, J. J. &Wiley, R. G. (1974) Synaptic vesicle depletion and recovery in cat sympathetic ganglia electrically stimulatedin vivo.Journal of Cell Biology 60, 365–74.

    Google Scholar 

  • Quilliam, J. P. &Tamarind, D. L. (1973a) Some effects of preganglionic nerve stimulation on synaptic vesicle populations in the rat superior cervical ganglion.Journal of Physiology 235, 317–31.

    Google Scholar 

  • Quilliam, J. P. &Tamarind, D. L. (1973b) Local vesicle populations in rat superior cervical ganglia and the vesicle hypothesis.Journal of Neurocytology 2, 59–75.

    Google Scholar 

  • Rose, S. J., Pappas, G. D. &Kriebel, M. E. (1978) The fine structure of identified frog neuromuscular junctions in relation to synaptic activity.Brain Research 144, 213–39.

    Google Scholar 

  • Sacchi, O., Consolo, S., Peri, G., Prigioni, I., Ladinsky, H. &Perri, V. (1978) Storage and release of acetylcholine in the isolated superior cervical ganglion of the rat.Brain Research 151, 443–56.

    Google Scholar 

  • Sacchi, O. &Perri, V. (1977a) Quantal release of acetylcholine from the nerve endings of the guinea pig superior cervical ganglion.Pflugers Archives 329, 207–20.

    Google Scholar 

  • Sacchi, O. &Ferri, V. (1971b) Quantal release of ACh in rat superior cervical ganglia in the presence of hemicholinium-3.Archiv di Fisiologica 68, 339–51.

    Google Scholar 

  • Sacchi, O. &Perri, V. (1973) Quantal mechanism of transmitter release during progressive depletion of the presynaptic stores at a ganglionic synapse.Journal of General Physiology 61, 342–60.

    Google Scholar 

  • Skok, V. I. (1973)Physiology of Autonomic Ganglia, pp. 139–53. Tokyo: Igaku Shoin.

    Google Scholar 

  • Smith, J. E. &Reese, T. S. (1980) Use of aldehyde fixatives to determine the rate of synaptic transmitter release.Journal of Experimental Biology 89, 19–29.

    Google Scholar 

  • Suszkiw, J. B. (1980) Kinetics of acetylcholine recovery inTorpedo electromotor synapses depleted of synaptic vesicles.Neuroscience 5, 1341–9.

    Google Scholar 

  • Tal, M. &Rotshenker, S. (1983) Recycling of synaptic vesicles in motor nerve endings separated from their target muscle fibers.Brain Research 270, 131–3.

    Google Scholar 

  • Tauc, L. (1979) Are vesicles necessary for release of acetylcholine at cholinergic synapses?Biochemical Pharmacology 27, 3493–8.

    Google Scholar 

  • Teichberg, S. &Holtzman, E. (1973) Axonal agranular reticulum and synaptic vesicles in cultured embryonic chick sympathetic neurons.Journal of Cell Biology 57, 88–108.

    Google Scholar 

  • Teichberg, S., Holtzman, E., Crain, S. M. &Peterson, E. R. (1975) Circulation and turnover of synaptic vesicle membrane in cultured fetal mammalian spinal cord neurons.Journal of Cell Biology 67, 215–30.

    Google Scholar 

  • Thureson-Klein, A., Klein, R. L. &Zhu, P.-C. (1986) Exocytosis from large dense cored vesicles as a mechanism for neuropeptide release in the peripheral and central nervous system.Scanning Electron Microscopy 1, 179–87.

    Google Scholar 

  • Torri-Tarelli, F., Grohovaz, F., Fesce, R. &Ceccarelli, B. (1985) Temporal coincidence between synaptic vesicle fusion and quantal secretion of acetylcholine.Journal of Cell Biology 101, 1386–99.

    Google Scholar 

  • Tremblay, J. P., Laurie, R. E. &Colonnier, M. (1983) Is the MEPP due to the release of one vesicle or to the simultaneous release of several vesicles at one active zone?Brain Research Reviews 6, 299–314.

    Google Scholar 

  • Tremblay, J. P. &Phillipe, E. (1981) Morphological changes in presynaptic terminals of the chick ciliary ganglion after stimulationin vivo.Experimental Brain Research 43, 439–46.

    Google Scholar 

  • Van Der Kloot, W. &Van Der Kloot, Th. E. (1985) Activity increases quantal size at the frog neuromuscular junction.Experientia 41, 47–8.

    Google Scholar 

  • Van Harreveld, A. &Trubatch, J. (1975) Synaptic changes in frog brain after stimulation with potassium chloride.Journal of Neurocytology 4, 33–46.

    Google Scholar 

  • Von Wedel, R. J., Carlson, S. S. &Kelly, R. B. (1981) Transfer of synaptic vesicle antigens to the pre-synaptic plasma membrane during exocytosis.Proceedings of the National Academy of Sciences USA 78, 1014–18.

    Google Scholar 

  • Zimmerman, H. (1979) Vesicle recycling and transmitter release.Neuroscience 4, 1773–804.

    Google Scholar 

  • Zimmerman, H. &Denston, C. R. (1977) Recycling of synaptic vesicles in the cholinergic synapses ofTorpedo electric organ during induced transmitter release.Neuroscience 2, 695–714.

    Google Scholar 

  • Zimmerman, H. &Whittaker, V. P. (1974a) Effect of electrical stimulation on the yield and composition of synaptic vesicles from the cholinergic synapses of the electric organ ofTorpedo: a combined biochemical, electrophysiological and morphological study.Journal of Neurochemistry 22, 435–50.

    Google Scholar 

  • Zimmerman, H. &Whittaker, V. P. (1974b) Different recovery rates of the electrophysiological, biochemical and morphological parameters in the cholinergic synapses of theTorpedo electric organ after stimulation.Journal of Neurochemistry 22, 1109–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiley, R.G., Spencer, C. & Pysh, J.J. Time course and frequency dependence of synaptic vesicle depletion and recovery in electrically stimulated sympathetic ganglia. J Neurocytol 16, 359–372 (1987). https://doi.org/10.1007/BF01611347

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611347

Keywords

Navigation