Skip to main content
Log in

Description of nonradiative multiphonon transitions in the static coupling scheme II. Approximations

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

For sufficiently large phonon dispersion the general rate-expression for nonradiative multiphonon transitions reduces to a gentle analytical approximate expression suitable, due to its compactness, for numerical calculations too. Simple explicit formulae are obtained in classical and semiclassical approximation frequently used in earlier papers, the severe limitations imposed to their actual applicability being discussed. On the basis of the concept of a mean phonon energy effective at medium temperatures, we derive explicit overlap-factor formulae applying to the experimentally most typical cases when the spacings of the electronic levels involved in the nonradiative multiphonon transitions considered are larger than the corresponding readjustment energies of the phonon field by a factor 101/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pässler R., Czech. J. Phys.B 24 (1974), 322.

    Google Scholar 

  2. Lax M., J. Chem. Phys.20 (1952), 1752.

    Google Scholar 

  3. Rickayzen G., Proc. Roy. Soc.A 241 (1957), 480.

    Google Scholar 

  4. Stasiw O., Elektronen- und Ionenprozesse in Ionenkristallen. Springer, Berlin-Göttingen-Heidelberg, 1959.

    Google Scholar 

  5. Perlin Yu. E., UFN80 (1963), 553.

    Google Scholar 

  6. Sinyavskiy E. P., Kovarskiy V. A., FTT9 (1967), 1464.

    Google Scholar 

  7. Bonch-Bruevich V. L., Vestn. Univ. Moskva (III)12, Nr. 5, (1971), 586.

    Google Scholar 

  8. Kubo R., Toyozawa Y., Progr. theor. Phys.13 (1955), 160.

    Google Scholar 

  9. McCumber D. E., J. math. Phys.5 (1964), 221.

    Google Scholar 

  10. Pekar S. I., UFN50 (1953), 197.

    Google Scholar 

  11. Kubo R.,in “Halbleiter und Phosphore”, Akademie-Verlag Berlin, 1958, p. 584.

    Google Scholar 

  12. Huang K., Rhys A., Proc. Roy. Soc.A 204 (1950), 406.

    Google Scholar 

  13. Meyer H. J. G., HalbleiterproblemeIII (1956), 230.

    Google Scholar 

  14. Dexter D. L., Solid State Phys. 6 (1958), 353.

    Google Scholar 

  15. Howgate D. W., Phys. Rev. (2)177 (1969), 1358.

    Google Scholar 

  16. Krivoglaz M. A., Pekar S. I., Trudy Inst. Fiz. AN USSR4 (1953), 37.

    Google Scholar 

  17. Krivoglaz M. A., ZhETF25 (1953), 191.

    Google Scholar 

  18. Curie D., Luminescence cristalline, Paris, 1960.

  19. Haug A., Theoretische Festkörperphysik II, Deuticke, Wien, 1970.

    Google Scholar 

  20. Fowler W. B., Dexter D. L., Phys. Rev. (2)128 (1962), 2154.

    Google Scholar 

  21. Pässler R., phys. stat. sol. (b)65 (1974), 561.

    Google Scholar 

  22. Schlag E. W., Schneider E., Fischer S. F., Ann. Rev. Phys. Chem.22 (1971), 465.

    Google Scholar 

  23. O'Rourke R. C., Phys. Rev.91 (1953), 265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pässler, R. Description of nonradiative multiphonon transitions in the static coupling scheme II. Approximations. Czech J Phys 25, 219–234 (1975). https://doi.org/10.1007/BF01589478

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01589478

Keywords

Navigation