Skip to main content
Log in

On the theory of the viscoelastic behavior of soft polymers in moderately large deformations

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

Restricting consideration to deformations in which time shift invariance is preserved, a series of models was developed for the prediction of the viscoelastic behavior of isotropic soft polymers. The models describe the time dependent stress through the Boltzmann superposition integral incorporating into it an appropriately chosen nonlinear measure of strain. The theory was developed in its most general threedimensional form. It requires a single time function, the relaxation modulus of linear viscoelastic theory. In its simplest form the strain measure contains a single material parameter.

Zusammenfassung

Unter der Beschränkung auf Deformationen, für welche Invarianz gegen Verschiebungen in der Zeit vorliegt, wird eine Reihe von Modellen zur Voraussage des viskoelastischen Verhaltens isotroper weicher Polymerer entwickelt. Diese Modelle beschreiben die zeitabhängige Spannung durch ein Boltzmannsches Superpositionsintegral, in das ein geeignet gewähltes nicht-lineares Dehnungsmaß eingeführt wird. Die Theorie wird in der allgemeinen drei-dimensionalen Form dargestellt. Sie verwendet eine einzige Zeitfunktion, nämlich den Relaxationsmodul der linearen Theorie der Viskoelastizität. In der einfachsten Form enthält das Dehnungsmaß nur einen Stoffparameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\underline{\underline B} \) :

Finger's deformation tensor

B :

a body

C 1 ,C 2 :

Mooney-Rivlin constants

\(\underline{\underline C} \) :

Green's deformation tensor

\(\underline{\underline c} \) :

Cauchy's deformation tensor

c :

a proportionality constant

C P :

heat capacity at constant pressure

C V :

heat capacity at constant volume

\(\underline{\underline d} \) :

stretching tensor

da :

elemental deformed area

dA :

elemental undeformed area

ds :

elemental deformed length

dS :

elemental undeformed length

\(\underline{\underline E} \) G :

Green's strain tensor

\(\underline{\underline E} \) c :

Cauchy's infinitesimal strain tensor

\(\underline{\underline E} \) p :

Piola's strain tensor

\(\underline{\underline E} \) tg :

generalized Lagrangean strain tensor

\(\underline{\underline E} \) tn :

Lagrangeann-measure of strain tensor

\(\underline{\underline e} \) A :

Almansi's strain tensors

\(\underline{\underline e} \) s :

Swainger's infinitesimal strain tensor

\(\underline{\underline e} \) F :

Finger's strain tensor

\(\underline{\underline e} \) eg :

generalized Eulerian strain tensor

\(\underline{\underline e} \) en :

Euleriann-measure of strain tensor

\(\underline{\underline F} \) :

deformation gradient tensor

\(\underline{\underline G} \) :

velocity gradient tensor

G :

shear modulus

G e :

equilibrium shear modulus

\(\underline{\underline I} \) :

unit (metric) tensor

III C :

determinant of\(\underline{\underline C} \)

III c :

determinant of\(\underline{\underline c} \)

M i :

memory functions

n :

strain parameter

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{n} \) :

matrix of the eigenvectors of\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{B} \)

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{N} \) :

matrix of the eigenvectors\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{C} \)

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{O} \) :

null matrix

P :

hydrostatic pressure

\(\underline{\underline Q}\) :

orthogonal tensor

\(\underline{\underline R} \) :

rotation tensor of the deformation gradient

r :

a vector

\(\underline{\underline S} \) :

Piola's stress tensor

\(\underline{\underline T} \) :

a tensor

t :

present time

u :

past time

\(\underline{\underline U} \) :

right stretch tensor

V :

volume

\(\underline{\underline V} \) :

left stretch tensor

ν :

velocity

x :

position vector of a particle at timet

\(\underline {\tilde x}\) :

instantaneous position vector of a particle at timeu

X :

position vector of a particle in the reference configuration

α :

index of principal directions

γ :

C P /C v

δ :

Kronecker's delta

η :

Newtonian viscosity

λ x :

stretch ratios in the principal directions

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\Lambda } \) :

matrix of eigenvalues of\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{C} \) and\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{B} \)

ξ :

a material point or particle

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\Phi } _i \) :

generalized strain functions

\(\underline{\underline \omega } \) :

vorticity tensor

\(\underline{\underline {\bar \sigma }} \) :

Cauchy's or true stress tensor

:

del operator

subscriptt :

denotes a vector, tensor or matrix relative to the present timet

subscriptu :

denotes a vector, tensor, or matrix relative to the past timeu

superscript* :

denotes rotated coordinates

References

  1. Truesdell, C., W. Noll, The Non-Linear Field Theories of Mechanics, in: Encyclopedia of Physics, Vol. III/3 (Berlin 1965).

  2. Chen, I. J., D. C. Bogue Trans. Soc. Rheol.16, 59 (1972).

    Google Scholar 

  3. Carreau, P. J. Trans. Soc. Rheol.16, 99 (1972).

    Google Scholar 

  4. Tschoegl, N. W., J. Becht, in: Deformation and Fracture of High Polymers, pp. 227ff. (New York 1973).

  5. Lee, E. H., L. E. Hulbert, ibid., pp. 243ff.

  6. Astarita, G., G. Marrucci Principles of Non-Newtonian Fluid Mechanics (Maidenhead, England 1974).

    Google Scholar 

  7. Chang, W. V., Ph. D. Thesis, California Institute of Technology (Pasadena, California 1976).

  8. Chang, W. V., R. Bloch, N. W. Tschoegl Proc. Natl. Acad. Sci. USA73, 981 (1976).

    Google Scholar 

  9. Bloch, R., W. V. Chang, N. W. Tschoegl, submitted to Trans. Soc. Rheol.

  10. Chang, W. V., R. Bloch, N. W. Tschoegl, submitted to J. Polym. Sci.

  11. Lodge, A. S., Body Tensor Fields in Continuum Mechanics (New York 1974).

  12. Noll, W., The Foundations of Mechanics and Thermodynamics, Selected papers (Berlin 1974).

  13. Eringen, A. C., Nonlinear Theory of Continuum Mechanics (New York 1962).

  14. Truesdell, C., R. Toupin, Principles of Classical Mechanics and Field Theory, in: Encyclopedia of Physics, Vol. III/1, sec. 33 (Berlin 1960).

  15. Karni, Z., M. Reiner, in: Second Order Effects in Elasticity, Plasticity and Fluid Dynamics, p. 217 (New York 1966).

  16. Seth. B. R., ibid., p. 162ff.

  17. Seth, B. R. Bull. Cal. Math. Soc.62, 49 (1970).

    Google Scholar 

  18. Hsu, T. C., S. R. Davis, R. Royales J. Basic Eng.89, 453 (1967).

    Google Scholar 

  19. Blatz, P. J., B. M. Chu, H. Wayland Trans. Soc. Rheol.13, 83 (1969).

    Google Scholar 

  20. Chu, B. M., P. J. Blatz Ann. Biomed. Eng.1, 204 (1972).

    Google Scholar 

  21. Ogden, R. W. Rubber Chem. Tech.46, 398 (1973).

    Google Scholar 

  22. Blatz, P. J., S. C. Sharda, N. W. Tschoegl Proc. Nat. Acad. Sci.70, 3041 (1973).

    Google Scholar 

  23. Blatz, P. J., S. C. Sharda, N. W. Tschoegl Trans. Soc. Rheol.18, 145 (1974).

    Google Scholar 

  24. Sharda, S. C., P. J. Blatz, N. W. Tschoegl Letters Appl. Eng. Sci.2, 53 (1974).

    Google Scholar 

  25. Blatz, P. J., W. V. Chang, submitted to Trans. Soc. Rheol.

  26. Chang, W. V., P. J. Blatz, Int. J. Solid Structures (in press).

  27. Chang, W. V., R. Bloch, N. W. Tschoegl, Macromolecules (in press).

  28. Flory, P. J. Trans. Faraday Soc.57, 829 (1961).

    Google Scholar 

  29. Smith, J. M., H. C. van Ness, Introduction to Chemical Engineering Thermodynamics, p. 70 (New York 1959).

  30. Tobolsky, A. V., R. D. Andrews J. Chem. Phys.13, 3 (1945).

    Google Scholar 

  31. Guth, E., P. E. Wack, R. L. Anthony J. Appl. Phys.17, 347 (1946).

    Google Scholar 

  32. Chasset, R., P. Thirion, Proc. Intern. Conf. on Physics of Non-Crystalline Solids, p. 345 (Amsterdam 1965).

  33. Djiauw, L. K., A. N. Gent J. Poly. Sci. Symposium48, 159 (1974).

    Google Scholar 

  34. Bagley, E. B., R. E. Dixon Trans. Soc. Rheol.18, 371 (1974).

    Google Scholar 

  35. Bloch, R., W. V. Chang, N. W. Tschoegl, submitted to Rubber Chem. Tech.

  36. Gent, A. N. J. Appl. Poly. Sci.6, 433 (1962).

    Google Scholar 

  37. Kawabata, S. J. Macromol. Sci. — Phys.B8, 605 (1973).

    Google Scholar 

  38. Bergen, J. T., in: Viscoelasticity — Phenomenological Aspects, p. 109 (New York 1960).

  39. Valanis, K. C., R. F. Landel Trans. Soc. Rheol.11, 243 (1967).

    Google Scholar 

  40. Leaderman, H. Trans. Soc. Rheol.6, 361 (1962).

    Google Scholar 

  41. Staverman, A. J., F. Schwarzl, in: Die Physik der Hochpolymeren, Vol. IV, p. 139 (Berlin 1956).

  42. Green, A. E., R. S. Rivlin Arch. Rat. Mech. Anal.1, 1 (1957).

    Google Scholar 

  43. Coleman, B. D., W. Noll Rev. Mod. Phys.33, 329 (1961);36, 1103 (1964).

    Google Scholar 

  44. Pipkin, A. C. Rev. Mod. Phys.36, 1038 (1964).

    Google Scholar 

  45. Leaderman, H., F. McCrackin, O. Nakada Trans. Soc. Rheol.7, 111 (1963).

    Google Scholar 

  46. Findley, W. N., J. S. Y. Lai Trans. Soc. Rheol.11, 361 (1967).

    Google Scholar 

  47. Leaderman, H. Elastic and Creep Properties of Filamentous Materials and Other High Polymers, (The Textile Foundation, Washington D. C., 1943).

    Google Scholar 

  48. Halpin, J. C. J. Appl. Phys.36, 2975 (1965).

    Google Scholar 

  49. Fung, Y. C., in: Biomechanics — Its Foundations and Objectives, Chapter 7 (New York 1970).

  50. Farris, R. J., Ph. D. Dissertation, Department of Civil Engineering, University of Utah (1970).

  51. Bloch, R., W. V. Chang, N. W. Tschoegl, submitted to Trans. Soc. Rheol.

  52. Tschoegl, N. W. Kolloid-Z.174, 113 (1961).

    Google Scholar 

  53. Valanis, K. C., R. F. Landel J. Appl. Phys.38, 2297 (1967).

    Google Scholar 

  54. Lodge, A. S., Proc. 2nd Int. Congr. Rheol. p. 229 (New York 1954).

  55. Fredrickson, A. G. Chem. Eng. Sci.17, 155 (1962).

    Google Scholar 

  56. Walters, K. W. Quart. J. Mech. and Appl. Math.15, 63 (1962).

    Google Scholar 

  57. Oldroyd, J. G., in: Second Order Effects in Elasticity, Plasticity and Fluid Dynamics, p. 520 (New York 1965).

  58. Walters, K., ibid., p. 507.

  59. Leonov, A. I., G. V. Vinogradov Doklady Akademii Nauk SSSR162, 869 (1965).

    Google Scholar 

  60. Yamamoto, M. J. Phys. Soc. of Japan25, 239 (1968).

    Google Scholar 

  61. Meissner, J. Rheol. Acta10, 230 (1971).

    Google Scholar 

  62. Meissner, J. J. Appl. Polym. Sci.16, 2877 (1972).

    Google Scholar 

  63. Lodge, A. S., J. Meissner Rheol. Acta12, 41 (1973).

    Google Scholar 

  64. Bernstein, B., E. A. Kearsley, L. J. Zapas Trans. Soc. Rheol.7, 391 (1963).

    Google Scholar 

  65. Bernstein, B. Acta Mech.2, 329 (1966).

    Google Scholar 

  66. Graessley, W. W. J. Chem. Phys.43, 2696 (1965);47, 1942 (1967).

    Google Scholar 

  67. Graessley, W. W. Adv. Polym. Sci.16, 1 (1975).

    Google Scholar 

  68. Tanaka, T., M. Yamamoto, Y. Takano J. Macromol. Sci. Phys.B4, 931 (1970).

    Google Scholar 

  69. Kaye, A. Brit. J. Appl. Phys.17, 803 (1966).

    Google Scholar 

  70. Tanner, R. I. A.I.Ch.E.J.15, 177 (1969).

    Google Scholar 

  71. Meister, B. J. Trans. Soc. Rheol.15, 63 (1971).

    Google Scholar 

  72. Sakai, M., H. Fukaya, M. Mikasawa Trans. Soc. Rheol.16, 635 (1972).

    Google Scholar 

  73. Vinogradov, G. V., Yu. Yanovsky, A. I. Isayev J. Polym. Sci.A2, 1239 (1970).

    Google Scholar 

  74. Vinogradov, G. V. Pure and Appl. Chem.26, 423 (1971).

    Google Scholar 

  75. Ziabicki, A. Pure and Appl. Chem.26, 481 (1971).

    Google Scholar 

  76. Aciano, D., F. P. LaMancha, G. Marrucci, G. Titomanlio, submitted to J. Non Newtonian Fluid Mech.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, W.V., Bloch, R. & Tschoegl, N.W. On the theory of the viscoelastic behavior of soft polymers in moderately large deformations. Rheol Acta 15, 367–378 (1976). https://doi.org/10.1007/BF01574493

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01574493

Keywords

Navigation