Skip to main content
Log in

Iron effect on acetone-butanol fermentation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

WhenClostridium acetobutylicum was grown in batch culture under iron limitation (0.2 mg·l−1) at a pH of 4.8, glucose was fermented, to butanol as the major fermentation end product, and small quantities of acetic acid were produced. The final conversion yield of glucose into butanol could be increased from 20% to 30% by iron limitation. The acetonebutanol ratio was changed from 3.7 (control) to 11.8. Hydrogenase specific activity was decreased by 40% and acetoacetate decarboxylase specific activity by 25% under iron limitation. Thus, iron limitation affects carbon and electron flow in addition to hydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Adams MWW, Mortenson LE, Chen JS (1980) Hydrogenase. Biochim Biophys Acta 594:105–176

    PubMed  Google Scholar 

  2. Bauchop T (1971) Mechanism of hydrogen formation inTrichomonas foetus. J Gen Microbiol 68:27–33

    PubMed  Google Scholar 

  3. Chen JS, Mortenson LE (1974) Purification and properties of hydrogenase fromClostridium pasteurianum W 5. Biochim Biophys Acta 371:283–298

    PubMed  Google Scholar 

  4. Datta R, Zeikus JG (1985) Modulation of acetone-butanolethanol fermentation by carbon monoxide and organic acids. Appl Environ Microbiol 49:522–529

    Google Scholar 

  5. Junelles AM, Janati-Idrissi R, El Kanouni A, Petitdemange H, Gay R (1987) Acetone-butanol fermentation by mutants selected for resistance to acetate and butyrate halogen analogues. Biotechnol Lett 9:175–178

    Google Scholar 

  6. Kim BH, Bellows P, Datta R, Zeikus JG (1984) Control of carbon and electron flow inClostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields. Appl Environ Microbiol 48:764–770

    Google Scholar 

  7. Mac Kellar RC, Sprott GD (1979) Solubilization and properties of a particulate hydrogenase fromMethanobacterium strain G 2R. J Bacteriol 139:321–338

    Google Scholar 

  8. Matta-El-Ammouri G, Janati-Idrissi R, Assobhei O, Petitdemange H, Gay R (1985) Mechanism of the acetone formation inClostridium acetobutylicum. FEMS Microbiol Lett 30:11–26

    Google Scholar 

  9. Matta-El-Ammouri G, Janati-Idrissi R, Junelles AM, Petitdemange H, Gay R (1987) Effects of butyric and acetic acids on acetone-butanol fermentation byClostridium acetobutylicum. Biochimie 69:109–115

    PubMed  Google Scholar 

  10. Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethylcellulase activity. Anal Biochem 2:127–132

    Google Scholar 

  11. Petitdemange H, Bellanger M, Lambert D, Gay R (1971) Importance de l'activité NAD-ferrédoxine réductasique chez les clostridia du groupe des butyriques. C R Seances Acad Sci [III] 273:985–988

    Google Scholar 

  12. Petitdemange H, Cherrier C, Raval G, Gay R (1976) Regulation of the NADH and NADPH ferredoxin oxydoreductases in clostridia of the butyric group. Biochim Biophys Acta 431:334–347

    Google Scholar 

  13. Weistheimer FH (1969) Acetoacetate decarboxylase fromClostridium acetobutylicum. Methods Enzymol 43:231–241

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junelles, A.M., Janati-Idrissi, R., Petitdemange, H. et al. Iron effect on acetone-butanol fermentation. Current Microbiology 17, 299–303 (1988). https://doi.org/10.1007/BF01571332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01571332

Keywords

Navigation