Skip to main content
Log in

Lower bounds for maximal and convex layers problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper we derive tight lower bounds for the maximal and convex layers problems in the plane. Our lower bound proofs for the maxima problem and convex hull problem are simpler than those previously known. We also obtain an Ω(nlog n) lower bound for the maximal depth problem, and the convex depth problem, when the points are given in sorted order of their x-coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aho, A. V., Hopcroft, J. E., and Ullman, J. D.,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Massachusetts, 1974.

    MATH  Google Scholar 

  2. Ben-Or, M., Lower Bounds for Algebraic Computation Trees,Proc. 15th ACM Symp. on Theory of Computing, Boston, Massachusetts, 1983, pp. 80–86.

  3. Chazelle, B. M., Optimal Algorithms for Computing Depths and Layers,IEEE Trans. Inform. Theory,31 (1985), pp. 509–517.

    Article  MATH  MathSciNet  Google Scholar 

  4. Emde Boas, P. V., On the Ω(n lgn) Lower Bound for Convex Hull and Maximal Vector Determination,Inform. Process. Lett.,10 (1980), pp. 132–136.

    Article  MATH  MathSciNet  Google Scholar 

  5. Graham, R. L., An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set,Inform. Process. Lett.,1 (1972), pp. 132–133.

    Article  MATH  Google Scholar 

  6. Kapoor, S., and Ramanan, P., Unpublished manuscript. Also see the later's Ph.D. Thesis, Topics in Combinatorial Algorithms, Department of Computer Science, University of Illinois, Urbana, Illinois, 1984.

    Google Scholar 

  7. Kirkpatrick, D. G., and Seidel, R., Output Size Sensitive Algorithms for Finding Maximal Vectors,Proc. 1st Ann. ACM Symp. on Computational Geometry, Baltimore, Maryland, 1985, pp. 89–96.

  8. Kirkpatrick, D. G., and Seidel, R., The Ultimate Planar Convex Hull Algorithm?,SIAM J. Comput.,15 (1986), pp. 287–299.

    Article  MATH  MathSciNet  Google Scholar 

  9. Kung, H. T., Luccio, F., and Preparata, F. P., On Finding the Maxima of a Set of Vectors,J. Assoc. Comput. Mach.,22 (1975), pp. 469–476.

    MATH  MathSciNet  Google Scholar 

  10. Preparata, F. P., An Optimal Real Time Algorithm for Planar Convex Hull,Comm. ACM,22 (1979), pp. 402–405.

    Article  MATH  MathSciNet  Google Scholar 

  11. Preparata, F. P., and Hong, S. J., Convex Hulls of Finite Sets of Points in Two and Three Dimensions,Comm. ACM,20 (1977), pp. 87–93.

    Article  MATH  MathSciNet  Google Scholar 

  12. Ramanan, P., Obtaining Lower Bounds Using Artificial Components,Inform. Process. Lett.,24 (1987), pp. 243–246.

    Article  MATH  MathSciNet  Google Scholar 

  13. Shamos, M. I., Computational Geometry, Ph.D. Thesis, Yale University, New Haven, Connecticut, 1978.

    Google Scholar 

  14. Steele, J. M., and Yao, A. C., Lower Bounds for Algebraic Decision Trees,J. Algorithms,3 (1982), pp. 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  15. Yao, A. C., A Lower Bound to Finding Convex Hulls,J. Assoc. Comput. Mach.,28 (1981), pp. 780–789.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Bernard Chazelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, S., Ramanan, P. Lower bounds for maximal and convex layers problems. Algorithmica 4, 447–459 (1989). https://doi.org/10.1007/BF01553901

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01553901

Key words

Navigation