Skip to main content
Log in

Expression of differentiated functions in hepatoma cell hybrids: IX extinction and reexpression of liver-specific enzymes in rat hepatoma-Chinese hamster fibroblast hybrids

  • Published:
Somatic Cell Genetics

Abstract

Most of the hybrid clones derived from a cross of Chinese hamster fibroblasts (DON) with rat hepatoma cells (Faza 967) showed preferential loss of rat chromosomes. Two of the hybrid clones retained the rat chromosomes, and both showed extinction of 4 liverspecific enzymes: aldolase B, liver alcohol dehydrogenase, and the inducible enzymes tyrosine aminotransferase and alanine aminotransferase. Subcloning of 1 of these hybrids, which contained 2 sets of hepatoma chromosomes and 1 set of hamster chromosomes, permitted the isolation of some clones which reexpressed 1 or more of the liver-specific enzymes. Liver alcohol dehydrogenase was the most frequently reexpressed enzyme and aldolase B the least. Tyrosine aminotransferase inducibility was reexpressed independently of basal activity, and the enzyme produced by the reexpressing hybrid cells was precipitated by a specific antiserum. No correlation was detected between the presence or absence of the marker chromosomes (large metacentrics) of the hamster parent and the extinction and reexpression of the hepatic enzymes. The results reported confirm and extend to interspecific hybrids the observation of the stable and independent reexpression of tissue-specific enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  1. Bertolotti, R., and Weiss, M. C. (1972).J. Cell. Physiol. 79:211–223.

    PubMed  Google Scholar 

  2. Weiss, M. C., and Chaplain, M. (1971).Proc. Natl. Acad. Sci. 68:3026–3030.

    PubMed  Google Scholar 

  3. Bertolotti, R., and Weiss, M. C. (1972).Biochimie 54:195–201.

    PubMed  Google Scholar 

  4. Sparkes, R. S., and Weiss, M. C. (1973).Proc. Natl. Acad. Sci. 70:377–381.

    PubMed  Google Scholar 

  5. Bertolotti, R., and Weiss, M. C. (1974).Differentiation,2:5–17.

    Google Scholar 

  6. Davidson, R. L., Ephrussi, B., and Yamamoto, K. (1966).Proc. Natl. Acad. Sci. 56:1437–1440.

    PubMed  Google Scholar 

  7. Ephrussi, B. (1973).Hybridization of Somatic Cells, Princeton University Press, Princeton, N. J.

    Google Scholar 

  8. Klebe, R. J., Chen, T., and Ruddle, F. (1970).Proc. Natl. Acad. Sci. 66:1220–1227.

    PubMed  Google Scholar 

  9. Coon, H. G. (1969).Carnegie Inst. Wash. Yearbook 67:419–427.

    Google Scholar 

  10. Reuber, M. D. (1961).J. Natl. Cancer Inst. 26:891–900.

    PubMed  Google Scholar 

  11. Pitot, H. C., Peraino, C., Morse, P. A., and Potter, V. A. (1964).Natl. Cancer Inst. Monogr. 13:229–242.

    PubMed  Google Scholar 

  12. Littlefield, J. (1964).Science 145:709–710.

    PubMed  Google Scholar 

  13. Schneider, J. A., and Weiss, M. C. (1971).Proc. Natl. Acad. Sci. 68:127–131.

    PubMed  Google Scholar 

  14. Coon, H. G., and Weiss, M. C. (1969).Proc. Natl. Acad. Sci. 62:852–859.

    PubMed  Google Scholar 

  15. Ham, R. G. (1965).Proc. Natl. Acad. Sci. 53:288–293.

    PubMed  Google Scholar 

  16. Diamondstone, T. I. (1966).Anal. Biochem. 16:395–401.

    Google Scholar 

  17. Hayashi, S., Granner, D. K., and Tomkins, G. M. (1967).J. Biol. Chem. 242: 3998–4006.

    PubMed  Google Scholar 

  18. Segal, H. L., and Matsuzawa, T. (1970). In Colowick, S. P., and Kaplan, N. O. (eds.),Methods in Enzymology, Vol. XVIIaAcademic Press, New York, pp. 153–159.

    Google Scholar 

  19. Blostein, R., and Rutter, W. J. (1963).J. Biol. Chem. 238:3280–3285.

    PubMed  Google Scholar 

  20. Penhoet, E. D., Rajkumar, T., and Rutter, W. J. (1966).Proc. Natl. Acad. Sci. 56:1275–1282.

    PubMed  Google Scholar 

  21. Vallee, B. L., and Hoch, F. L. (1955).Proc. Natl. Acad. Sci. 41:327–338.

    Google Scholar 

  22. Lowry, O. H., Rosebrough, N. H., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193:265–278.

    PubMed  Google Scholar 

  23. Allen, J. M. (1958).Ann. N.Y. Acad. Sci. 94:937–951.

    Google Scholar 

  24. Beck, J. P., Beck, G., Wong, K. Y., and Tomkins, G. M. (1972).Proc. Natl. Acad. Sci. 69:3615–3619.

    PubMed  Google Scholar 

  25. Benedict, W. F., Nebert, D. W., and Thompson, E. B. (1972).Proc. Natl. Acad. Sci. 69:2179–2183.

    PubMed  Google Scholar 

  26. Thompson, E. B., and Gelehrter, T. D. (1971).Proc. Natl. Acad. Sci. 68:2589–2593.

    PubMed  Google Scholar 

  27. Croce, C. M., Litwack, G., and Koprowski, H. (1973).Proc. Natl. Acad. Sci. 70:1268–1272.

    PubMed  Google Scholar 

  28. Fougère, C., Ruiz, F., and Ephrussi, B. (1972).Proc. Natl. Acad. Sci. 69:330–334.

    PubMed  Google Scholar 

  29. Weiss, M. C., Bertolotti, R., and Peterson, J. A. (1972). In Sussman, M. (ed.),Molecular Genetics and Developmental Biology, Prentice-Hall, Englewood Cliffs, N. J., pp. 425–453.

    Google Scholar 

  30. Davidson, R. (1972).Proc. Natl. Acad. Sci. 69:951–955.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, M.C., Sparkes, R.S. & Bertolotti, R. Expression of differentiated functions in hepatoma cell hybrids: IX extinction and reexpression of liver-specific enzymes in rat hepatoma-Chinese hamster fibroblast hybrids. Somat Cell Mol Genet 1, 27–40 (1975). https://doi.org/10.1007/BF01538730

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538730

Keywords

Navigation