Skip to main content
Log in

Extinction of liver-specific functions in hybrids between differentiated and dedifferentiated rat hepatoma cells

  • Published:
Somatic Cell Genetics

Abstract

A cross has been performed between dedifferentiated rat hepatoma cells and the differentiated cells from which they were derived. 10 hybrid clones, containing the complete chromosome sets of both parents, show extinction of 4 liver-specific enzymes: tyrosine aminotransferase (E.C. 2.6.1.5), alanine aminotransferase (E.C. 2.6.1.2), and the liver-specific isozymes of alcohol dehydrogenase (E.C. 1.1.1.1) and aldolase (E.C. 4.1.2.13). Moreover, the 4 hybrid clones examined do not produce albumin. The only function of the differentiated parent which is not extinguished in the hybrid cells is inducibility of the aminotransferases. For 3 of the hybrid clones, extinction of 3 of the 4 enzymes is incomplete, but these clones do not differ in modal chromosome number from those which show more complete extinction of the enzymes. Subcloning of several of the hybrids revealed that the phenotype of the hybrids is very stable; 4 subclones showing reexpression of intermediate levels of the enzymes are characterized. These results show that dedifferentiation of the parental cells is not due to the simple loss of some factor required for the maintenance of expression of differentiated functions, and suggest that dedifferentiation is due to the activation of some control mechanism, whose final effect is negative, and which may be a part of the epigenotype of the embryonic hepatocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Deschatrette, J., and Weiss, M. C. (1975).Biochimie 56:1603–1611.

    Google Scholar 

  2. Pilot, H. C., Peraino, C., Morse, P. A., and Potter, V. A. (1964).Natl. Cancer Inst. Monogr. 13:229–242.

    PubMed  Google Scholar 

  3. Coon, H. G., and Weiss, M. C. (1969).Proc. Natl. Acad. Sci. U.S.A. 66:1220–1227.

    Google Scholar 

  4. Ham, R. G. (1965).Proc. Natl. Acad. Sci. U.S.A. 53:288–293.

    PubMed  Google Scholar 

  5. Weiss, M. C., and Chaplain, M. (1971).Proc. Natl. Acad. Sci. U.S.A. 68:3026–3030.

    PubMed  Google Scholar 

  6. Littlefield, J. (1964).Science 145:709–710.

    PubMed  Google Scholar 

  7. Davidson, R. L., and Ephrussi, B. (1965).Nature 205:1170–1171.

    Google Scholar 

  8. Schneider, J. A., and Weiss, M. C. (1971).Proc. Natl. Acad. Sci. U.S.A. 62:852–859.

    Google Scholar 

  9. Sparkes, R. S., and Weiss, M. C. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:377–381.

    PubMed  Google Scholar 

  10. Bertolotti, R., and Weiss, M. C. (1972).J. Cell. Physiol. 79:211–223.

    PubMed  Google Scholar 

  11. Bertolotti, R., and Weiss, M. C. (1972).Biochimie 54:195–201.

    PubMed  Google Scholar 

  12. Diamonstone, T. I. (1966).Anal. Biochem. 16:395–401.

    Google Scholar 

  13. Segal, H. L., and Matsuzawa, T. (1970). In Colowick, S. P. and Kaplan, N. O. (eds.),Methods in Enzymology, Vol. 17a, Academic Press, New York, pp. 153–159.

    Google Scholar 

  14. Ohno, S., Stenius, C., Christian, L., Harris, C., and Yvey, C. (1970).Biochem. Genet. 4:565–577.

    PubMed  Google Scholar 

  15. Koen, A. L., and Shaw, C. R. (1966).Biochem. Biophys. Acta 128:48–54.

    PubMed  Google Scholar 

  16. Blostein, R., and Rutter, W. J. (1963).J. Biol. Chem. 238:3280–3285.

    PubMed  Google Scholar 

  17. Penhoet, E. D., Rajkumar, T., and Rutter, W. J. (1966).Proc. Natl. Acad. Sci. U.S.A. 56:1275–1282.

    PubMed  Google Scholar 

  18. Glock, G. E., and McLean, P. (1953).Biochemistry 55:400–408.

    Google Scholar 

  19. Meera Khan, P. (1971).Arch. Biochem. Biophys. 145:470–483.

    PubMed  Google Scholar 

  20. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  21. Malawista, S. E., and Weiss, M. C. (1974)Proc. Natl. Acad. Sci. U.S.A. 71:927–931.

    PubMed  Google Scholar 

  22. Peterson, J., and Weiss, M. C. (1971).Proc. Natl. Acad. Sci. U.S.A. 69:571–575.

    Google Scholar 

  23. Weiss, M. C., Sparkes, R. S., and Bertolotti, R. (1975).Somatic Cell Genet. 1:27–40.

    PubMed  Google Scholar 

  24. Paul, J., and Hickey, I. (1974).Exp. Cell. Res. 87:20–30.

    PubMed  Google Scholar 

  25. Bertolotti, R., and Weiss, M. C. (1974).Differentiation 2:5–17.

    Google Scholar 

  26. Ephrussi, B. (1972).Hybridization of Somatic Cells, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deschatrette, J., Weiss, M.C. Extinction of liver-specific functions in hybrids between differentiated and dedifferentiated rat hepatoma cells. Somat Cell Mol Genet 1, 279–292 (1975). https://doi.org/10.1007/BF01538451

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538451

Keywords

Navigation