Skip to main content
Log in

Integration of a dominant selectable marker into human chromosomes and transfer of marked chromosomes to mouse cells by microcell fusion

  • Published:
Somatic Cell and Molecular Genetics

Abstract

A method for the production of stable mouse-human cell hybrids containing a single human chromosome is described. As a first step in this method, a cloned selectable marker, the E. coli xanthine-guanine phosphoribosyltransferase (Ecogpt) gene, was transferred to human cells to generate cell lines each carrying Ecogpt integrated into a different site. Human chromosomes marked with Ecogpt were transferred further into mouse cells by microcell fusion. Monochromosomal hybrids, in which the human chromosome is maintained by selection, have been produced for chromosomes 2, 5, 16, and a rearranged chromosome involving a translocation between chromosomes 1 and 2. In addition to these monochromosomal hybrids, we have also obtained monochromosomal hybrids for human chromosomes 6, 12, and 17 by selection for the loss of marked chromosome from the microcell hybrids each containing two human chromosomes. Although the human chromosome present in these hybrids cannot be maintained by selection, 80–90% of cells retained the transferred chromosome on continuous growth for 15 days. Monochromosomal hybrids would provide biological materials to construct genetic maps of human chromosomes. In addition, chromosomes marked with dominant selectable markers can be transferred further to any cell line of interest in inter- or intra-species combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Ege, T., and Ringertz, N.R. (1974).Exp. Cell Res. 87:378–382.

    PubMed  Google Scholar 

  2. Fournier, R.E.K., and Ruddle, F.H. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:319–323.

    PubMed  Google Scholar 

  3. Fournier, R.E.K., and Frelinger, J.A. (1982).Mol. Cell. Biol. 2:526–534.

    PubMed  Google Scholar 

  4. Athwal, R.S., and Dhar, V. (1984). InGene Transfer and Cancer, (ed.) Pearson, M.L. and Sternberg, N.L. (Raven Press, New York), pp. 21–29.

    Google Scholar 

  5. Dhar, V., Searle, B.M., and Athwal, R.S. (1984).Somat. Cell Mol. Genet. 10:547–559.

    PubMed  Google Scholar 

  6. McNeill, C.A., and Brown, R.L. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:5394–5398.

    PubMed  Google Scholar 

  7. Wigler, M., Silverstein, S., Lee, L.S., Pellicer, A., Cheng, Y.C., and Axel, R. (1977).Cell 11:223–232.

    PubMed  Google Scholar 

  8. McBride, O.W., and Ozer, H.L. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:1258–1262.

    PubMed  Google Scholar 

  9. Fournier, R.E.K., and Ruddle, F.H. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:3937–3941.

    PubMed  Google Scholar 

  10. Klobutcher, L.A., and Ruddle, F.H. (1979).Nature 280:657–660.

    PubMed  Google Scholar 

  11. Robins, D.M., Ripley, S., Henderson, A.S., and Axel, R. (1981).Cell 23:29–39.

    PubMed  Google Scholar 

  12. Donner, L., Dubbs, D.R., and Kit, S. (1977).Int. J. Cancer 20:256–267.

    PubMed  Google Scholar 

  13. McKinlay, M.A., Wilson, D.E., Harrison, B., and Povey, S. (1980).J. Natl. Cancer Inst. 64:241–248.

    PubMed  Google Scholar 

  14. Smiley, J.R., Steege, D.A., Juricek, D.K., Summers, W.P., and Ruddle, F.H. (1978).Cell 15:455–468.

    PubMed  Google Scholar 

  15. Tunnacliffe, A., Parker, M., Povey, S., Bengtsson, B.O., Stanley, K., Solomon, E., and Goodfellow, P. (1983).Embo J. 2:1577–1584.

    PubMed  Google Scholar 

  16. Mulligan, R.C., and Berg, P. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:2072–2076.

    PubMed  Google Scholar 

  17. Southern, P.J., and Berg, P. (1982).J. Mol. Appl. Genet. 1:327–341.

    PubMed  Google Scholar 

  18. O'Hare, K., Benoist, C., and Breathnach, R. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:1527–1531.

    PubMed  Google Scholar 

  19. Kushner, S.R. (1978). InGenetic Engineering, (eds.) Boyer, H.B., and Nicosia, S. (Elsevier-North Holland, Amsterdam), p. 17.

    Google Scholar 

  20. Birnboim, H.C., and Doly, J. (1979).Nucleic Acid Res. 7:1513–1523.

    PubMed  Google Scholar 

  21. Southern, E.M. (1975).J. Mol. Biol. 98:503–517.

    PubMed  Google Scholar 

  22. Alwine, J.C., Kemp, D.J., Parker, B.A., Reiser, J., Renart, J., Stark, G.R., and Wahl, G.M. (1979).Methods Enzymol. 68:220–242.

    PubMed  Google Scholar 

  23. Rigby, P.W.J., Dieckmann, M., Rhodes, C., and Berg, P. (1977).J. Mol. Biol. 113:237–251.

    PubMed  Google Scholar 

  24. Fournier, R.E.K. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:6349–6353.

    PubMed  Google Scholar 

  25. Peterson, E.A., and Evans, W.H. (1967).Nature 214:824–826.

    PubMed  Google Scholar 

  26. Mercer, W.E., and Schlegal, R.A. (1979).Exp. Cell Res. 120:417–421.

    PubMed  Google Scholar 

  27. Bobrow, M., and Gross, J. (1974).Nature 251:77–79.

    PubMed  Google Scholar 

  28. Seabright, M. (1971).Lancet 2:971–972.

    Google Scholar 

  29. Harris, H., and Hopkinson, D.A. (1976).Handbook of Enzyme Electrophoresis in Human Genetics, (Elsevier, New York).

    Google Scholar 

  30. Bakay, B., and Nyhan, W.L. (1971).Biochem. Genet. 5:81–90.

    PubMed  Google Scholar 

  31. Gusella, J.F., Jones, C., Kao, F.T., Housman, D., and Puck, T.T. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:7804–7808.

    PubMed  Google Scholar 

  32. Goss, S., and Harris, H. (1977).J. Cell Sci. 25:17–37.

    PubMed  Google Scholar 

  33. Law, M.L., and Kao, F.T. (1979).Cytogenet. Cell Genet. 24:102–114.

    PubMed  Google Scholar 

  34. Danna, S., and Wasmuth, J.J. (1982).Mol. Cell. Biol. 2:1220–1228.

    PubMed  Google Scholar 

  35. Goss, S.I., and Harris, H. (1977).J. Cell Sci. 25:39–57.

    PubMed  Google Scholar 

  36. Burgerhout, W.G., Leupe-DeSmit, S., and Jongsma, A.P.M. (1977).Cytogenet. Cell Genet. 18:267–283.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athwal, R.S., Smarsh, M., Searle, B.M. et al. Integration of a dominant selectable marker into human chromosomes and transfer of marked chromosomes to mouse cells by microcell fusion. Somat Cell Mol Genet 11, 177–187 (1985). https://doi.org/10.1007/BF01534706

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534706

Keywords