Skip to main content
Log in

Participation of serum proteins in the inflammation-primed activation of macrophages

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflamed lesions release degradation products of membrane lipids, lysophospholipids, and inflamed tumor tissues release alkylglycerols. Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to mice. In vitro treatment of mouse peritoneal cells (mixture of nonadherent and adherent cells) with lyso-Pc or DDG in fetal calf serum supplemented medium for 30 min, followed by 3-h cultivation of adherent cells (macrophages) alone, resulted in greatly enhanced Fc-receptor mediated phagocytic activity and Superoxide generating capacity of macrophages. The tumor lipid metabolite, DDG, is far more potent (400-fold) than lyso-Pc in terms of doses required for the maximal levels of macrophage activation. The inflammation-primed macrophage activation required a serum factor, vitamin D binding protein, as a precursor for the macrophage activating factor. Treatment of mouse peritoneal cells with 1μg lyso-Pc/ml or 50 ng DDG/ml in a serum-free 0.1 % egg albumin supplemented medium for 30 min, followed by 3-h cultivation of the treated peritoneal cells in a medium supplemented with a very small amount (0.0005–0.05%) of ammonium sulfate [20–50% saturated (NH4)2]SO4] precipitable protein fraction of FCS, resulted in greatly enhanced Superoxide generating capacity of macrophages. The ammonium sulfate precipitable fraction was found to contain vitamin D binding protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ngwenya, B. Z., andN. Yamamoto. 1985. Activation of peritoneal macrophages by lysophosphatidylcholine.Biochim. Biophys. Acta. 839:9–15.

    PubMed  Google Scholar 

  2. Ngwenya, B. Z., andN. Yamamoto. 1986. Effects of inflammation products on immune systems: Lysophosphatidylcholine stimulates macrophages.Cancer Immunol. Immunother. 21:1074–1082.

    Google Scholar 

  3. Yamamoto, N., andB. Z. Ngwenya. 1987. Activation of macrophages by lysophospholipids and ether derivatives of neutral lipids and phospholipids.Cancer Res. 47:2008–2013.

    PubMed  Google Scholar 

  4. Morton, D. L.,F. R. Eilber, E. C. Holmes, J. S. Hunt, A. S. Ketcham, M. J. Silberstein, andF. C. Sparks. 1974. BCG immunotherapy of malignant melanoma: Summary of a seven year experience.In Neoplasm Immunity: BCG Vaccination. A. Chicago Symposia. University of Illinois, Shori Press. Evanston, Illinois. 97–112.

    Google Scholar 

  5. Rapp, H. J. 1976. Immunotherapy of experimental cancer with BCG.In Tumor Virus Infections and Immunity. R. L. Crowell, H. Friedman, and J. E. Prier (editors). University Park Press, Baltimore. 261–264.

    Google Scholar 

  6. Zbar, B., andT. Tanaka, 1971. Immunotherapy of cancer: Regression of tumors after intralesional injection of livingMycobacterium bovis. Science 172:271–277.

    Google Scholar 

  7. Yamamoto, N., D. A. St. Claire, S. Homma, andB. Z. Ngwenya. 1988. Activation of mouse macrophages by alkylglycerols, inflammation products of cancerous tissues.Cancer Res. 48:6044–6049.

    PubMed  Google Scholar 

  8. Snyder, F., andR. Wood. 1969. Alkyl-1-enyl-ethers of glycerol in lipids from normal and neoplastic human tissues.Cancer Res. 29:51–257.

    Google Scholar 

  9. Howard, B. V., H. P. Morris, andJ. M. Bailey. 1972. Ether-lipids, glycerol phosphate dehydrogenase and growth rate in tumors and cultured cells.Cancer Res. 32:1533–1538.

    PubMed  Google Scholar 

  10. Ngwenya, B. Z., andN. Yamamoto. 1990. Contribution of lysophosphatidylcholine-treated nonadherent cells to mechanism of macrophage activation.Proc. Soc. Exp. Biol. Med. 198:118–124.

    Google Scholar 

  11. Homma, S., andN. Yamamoto. 1990. Activation process of macrophages after in vitro treatment of mouse lymphocytes with dodecylglycerol.Clin. Exp. Immunol. 78:307–313.

    Google Scholar 

  12. Homma, S., I. Millman, andN. Yamamoto. 1990. Serum factor for macrophage activation after in vitro dodecylglycerol treatment of mouse lymphocytes.Immunol. Cell. Biol. 68:135–142.

    Google Scholar 

  13. Yamamoto, N., S. Homma, andI. Millman. 1991. Identification of the serum factor required for in vitro activation of macrophages: Role of vitamin D3 binding protein (Group specific component, Gc) in lysophospholipid activation of mouse peritoneal macrophages.J. Immunol. 147:273–280.

    PubMed  Google Scholar 

  14. Yamamoto, N., S. Homma, J. G. Haddad, andM. N. Kowalski. 1991. Vitamin D3 binding protein required forin vitro activation of macrophages after dodecylglyercol treatment of mouse peritoneal cells.Immunology 74:420–424.

    PubMed  Google Scholar 

  15. Yamamoto, N., andS. Homma. 1991. Vitamin D3 binding protein (group-specific component, Gc) is a precursor for the macrophage activating signal factor from lysophosphatidylcholine-treated lymphocytes.Proc. Natl. Acad. Sci. U.S.A. 88:8539–8543.

    PubMed  Google Scholar 

  16. Kawai, N., andMatsumoto, H. 1984. Vitamin D-binding protein levels in liver cirrhosis, chronic hepatitis and rheumatoid arthritis.Jpn. J. Legal Med. 38:797–803.

    Google Scholar 

  17. Cohn, Z. A., andB. Benson. 1965. The differentiation of mononuclear phagocytes, morphology, cytochemistry, and biochemistry.J. Exp. Med. 121:153–169.

    PubMed  Google Scholar 

  18. Bianco, C., F. M. Griffin, andS. C. Silverstein. 1975. Studies of the macrophage complement receptors. Alternative of receptor function upon macrophage activation.J. Exp. Med. 141:1278–1290.

    PubMed  Google Scholar 

  19. Pick, E., andD. Mizel. 1981. Rapid microassays for the measurement of Superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader.J. Immunol. Methods 46:211–226.

    PubMed  Google Scholar 

  20. Estensen, R. D., J. G. White, andB. Holmes. 1974. Specific degranulation of human polymorphonuclear leukocytes.Nature 248:347–348.

    PubMed  Google Scholar 

  21. Babior, B. M., andH. J. Cohen. 1981. Measurement of neutrophil function: phagocytosis, degranulation, the respiratory burst and bacterial killing.In Methods in Hematology: Leukocyte Function. M. J. Cline (editor). Churchill Livingstone, New York. 1–38.

    Google Scholar 

  22. Peters, T. 1975. Serum albumin.In The Plasma Proteins, Vol. I. Academic Press, New York. 133–181.

    Google Scholar 

  23. Nakagawa, M., andT. Nishida. 1973. Effect of lysolecithin and albumin on lecithin-cholesterol acyltransferase activity in human plasma.J. Biochem. 74:1263–1266.

    PubMed  Google Scholar 

  24. Klibansky, C., andA. De Varies. 1963. Quantitative study of erythrocyte-lysolecithin interaction.Biochim. Biophys. Acta 70:176–187.

    PubMed  Google Scholar 

  25. Weber, N. 1985. Metabolism of orally administered rac-1-O-[l′-14C]dodecylglycerol and nutritional effects of dietary rac-1-O-dodecylglycerol in mice.J. Lipid Res. 26:1412–1420.

    PubMed  Google Scholar 

  26. Bromberg, Y., andE. Pick. 1984. Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell free system derived from macrophages.Cell. Immunol. 88:213–221.

    PubMed  Google Scholar 

  27. Bromberg, Y., andE. Pick. 1985. Activation of NADPH-dependent Superoxide production in a cell free system by sodium dodecyl sulfate.J. Biol. Chem. 260:13539–13545.

    PubMed  Google Scholar 

  28. Pick, E., Y. Bromberg, S. Shpungin, andR. Godba. 1987. Activation of the Superoxide forming NADPH oxidase in cell-free system by sodium dodecyl sulfate.J. Biol. Chem. 262:16476–16483.

    PubMed  Google Scholar 

  29. Copperhaver, D. H., N. P. Sollene, andB. H. Bowman. 1983. Posttranslational heterogeneity of the human vitamin D-binding protein (group-specific component).Arch. Biochem. Biophys. 226:218–223.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH grant AI-32140 to N.Y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, N., Willett, N.P. & Lindsay, D.D. Participation of serum proteins in the inflammation-primed activation of macrophages. Inflammation 18, 311–322 (1994). https://doi.org/10.1007/BF01534272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534272

Keywords

Navigation