Skip to main content
Log in

A new look at the laminar flow of power law fluids through granular beds

  • Original Contributions · Originalarbeiten
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

The paper deals with laminar flow of power law fluids through granular beds. A critical review of the assumptions concerning the capillary model of the bed, applied by various authors, led us to the conclusion that the derivation of the correlation eq. [13] given byChristopher andMiddleman was based on a too simplified model of the granular bed. Taking advantage of the approach presented in the classical works ofKozeny andCarman (which seems to be partly overlooked by some authors, including our own previous works) a modified correlation equation for power law fluids [21], a corrected formula for shear rate in the bed [29] and for Deborah number [32], as well as corrected correlation equation for fluids exhibiting memory effects [34] were presented.

Zusammenfassung

Diese Arbeit betrifft laminare Strömungen von Potenzgesetzflüssigkeiten durch Kornschüttungen. Eine kritische Prüfung der Annahmen, die von verschiedenen Autoren für das Kapillar-Modell der Schüttung gemacht worden sind, führt uns zu der Folgerung, daß die Herleitung der Korrelationsgleichung [13] nachChristopher undMiddleman auf einem übervereinfachten Modell der Kornschüttung basiert. Unter Nutzbarmachung der Annahmen, die in den klassischen Arbeiten vonKozeny undCarman dargestellt worden sind (sie wurden sowohl von manchen anderen Autoren als auch in unseren früheren Arbeiten nicht beachtet), werden nun eine modifizierte Korrelationsgleichung für die Potenzgesetzflüssigkeiten [21], eine korrigierte Formel für die Schergeschwindigkeit in der Schüttung [29], eine korrigierte Formel für die Deborah-Zahl [32] und eine korrigierte Korrelationsgleichung für Flüssigkeiten, die Gedächtnis-Effekte zeigen [34], angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant in eq. [9]

d p :

effective particle diameterd p = 6/a (wherea is the specific surface of the bed), m

f BK :

modified friction factor, defined by eq. [1]

k :

power law parameter, N sn/m2

K :

Kozeny constant, defined by eq. [8]

K 0 :

constant depending on the shape of the channel cross-section

K 1 :

constant, defined by eq. [5]

l :

bed height, m

l e :

channel length, m

n :

power law parameter

Δp :

pressure drop due to friction, N/m2

r h :

hydraulic radius, defined by eq. [6], m

s :

bed permeability, defined by eq. [16], m2

v 0 :

mean linear velocity related to an empty crosssection of the column, m/s

v e :

mean linear velocity in the channel, m/s

\(\dot \gamma _w \) :

shear rate at the wall of the channel, s−1

\(\dot \gamma _w^* \) :

shear rate at the wall of the channel calculated according to the formula [29], s−1

ε :

bed porosity

θ :

characteristic time of the fluid, s

λ :

friction factor, defined by eq. [25]

µ :

dynamic viscosity of the fluid, N s/m2

ψ :

parameter, defined by eq. [15], N sn/m1+n

De :

Deborah number, defined by eq. [33]

De * :

Deborah number, defined by eq. [32]

Re BK :

modified Reynolds number, defined by eq. [2]

Re BK :

modified Reynolds number, defined by eq. [26]

Re *BK :

modified Reynolds number, defined by eq. [23]

Re CM :

modified Reynolds number byChristopher andMiddleman, defined by eq. [14]

Re CM :

modified Reynolds number, defined by eq. [17]

References

  1. Blake, F. C., Trans. Am. Inst. Chem. Engrs.14, 415 (1922).

    Google Scholar 

  2. Kozeny, J., Sitzber. Akad. Wiss. Wien136 (Abt. IIa), 271 (1927).

    Google Scholar 

  3. Carman, P. C., Trans. Inst. Chem. Engrs.15, 150 (1937).

    Google Scholar 

  4. Bird, R. B., W. E. Stewart, E. N. Lightfoot, Transport Phenomena, Wiley (New York 1960).

    Google Scholar 

  5. Ergun, S., Chem. Eng. Progress48, 89 (1952).

    Google Scholar 

  6. Kembłowski, Z., J. Mertl, Chem. Eng. Sci.29, 213 (1974).

    Google Scholar 

  7. Kembłowski, Z., J. Mertl, M. Dziubiński, Chem. Eng. Sci.29, 1343 (1974).

    Google Scholar 

  8. Kembłowski, Z., M. Dziubiński, Rheol. Acta17, 176 (1978).

    Google Scholar 

  9. Kembłowski, Z., M. Michniewicz, Włókna Chemiczne4, 7 (1978)

    Google Scholar 

  10. Kembłowski, Z., M. Michniewicz, Zesz. Nauk. Politechniki Poznańskiej — Chemia i Inżynieria Chemiczna14, 189 (1978).

    Google Scholar 

  11. Brea, F. M., M. F. Edwards, W. L. Wilkinson, Chem. Eng. Sci.31, 329 (1976).

    Google Scholar 

  12. Hanna, M. R., W. Kozicki, C. Tiu, Chem. Eng. J.13, 93 (1977).

    Google Scholar 

  13. Bear, J., Dynamics of Fluids in Porous Media, American Elsevier (New York 1972).

    Google Scholar 

  14. Carman, P. C., Flow of Gases Through Porous Media, Butterworths (London 1956).

    Google Scholar 

  15. Scheidegger, A. E., The Physics of Flow Through Porous Media, University of Toronto Press (1974).

  16. Houpeurt, A., Mécanique des Fluides dans les Milieux Poreux, Critiques et Recherches, Editions Technip (Paris 1974).

    Google Scholar 

  17. Richardson, J. F., in:J. F. Davidson, D. Harrison (eds.), Fluidization, Academic Press (London 1971).

    Google Scholar 

  18. Bird, R. B., Can. J. Chem. Eng.43, 161 (1965).

    Google Scholar 

  19. Sadowski, T. J., R. B. Bird, Trans. Soc. Rheol.9, 243 and 251 (1965).

    Google Scholar 

  20. Christopher, R. H., S. Middleman, Ind. Eng. Chem. Fundls.4, 422 (1965).

    Google Scholar 

  21. Gregory, D. R., R. G. Griskey, Am. Inst. Chem. Eng. J.13, 122 (1967).

    Google Scholar 

  22. Gaitonde, N. Y., S. Middleman, Ind. Eng. Chem. Fundls6, 145 (1967).

    Google Scholar 

  23. Marshall, R. J., A. B. Metzner, Ind. Eng. Chem. Fundls.6, 393 (1967).

    Google Scholar 

  24. Kozicki, W., C. J. Hsu, C. Tiu, Chem. Eng. Sci.22, 487 (1967).

    Google Scholar 

  25. Yu, Y. H., C. Y. Wen, R. C. Bailie, Can. J. Chem. Eng.46, 149 (1968).

    Google Scholar 

  26. Siskovic, N., D. R. Gregory, R. G. Griskey, Am. Inst. Chem. Eng. J.17, 281 (1971).

    Google Scholar 

  27. Wampler, F. G., D. R. Gregory, Am. Inst. Chem. Eng. J.18, 443 (1972).

    Google Scholar 

  28. Mishra, P., D. Singh, I. M. Mishra, Chem. Eng. Sci.30, 397 (1975).

    Google Scholar 

  29. Michele, H., Rheol. Acta16, 413 (1977).

    Google Scholar 

  30. Sheffield, R. E., A. B. Metzner, Am. Inst. Chem. Eng. J.22, 736 (1976).

    Google Scholar 

  31. Hughmark, G. A., Am. Inst. Chem. Eng. J.18, 1020 (1972).

    Google Scholar 

  32. Harris, C. C., Powder Technology17, 235 (1977).

    Google Scholar 

  33. Miller, C., Ind. Eng. Chem. Fundls.11, 524 (1972).

    Google Scholar 

  34. Brydson, J. A., Flow Properties of Polymer Melts, Iliffe Books (London 1970).

    Google Scholar 

  35. Dullien, F. A. L., Chem. Eng. J.10, 1 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 figures and 1 table

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemblowski, Z., Michniewicz, M. A new look at the laminar flow of power law fluids through granular beds. Rheol Acta 18, 730–739 (1979). https://doi.org/10.1007/BF01533348

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01533348

Keywords

Navigation