Skip to main content
Log in

Photosynthetic membrane development inRhodopseudomonas spheroides

II. Correlation of pigment incorporation with morphological aspects of thylakoid formation

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

Cells ofRhodopseudomonas spheroides were depigmented by aerobic growth in the light and then transferred to 4% oxygen in the dark to induce pigment synthesis. Pigment synthesis and photochemical activity were measured fluorometrically. In conjunction with the fluorescence studies, thylakoid morphogenesis was followed by electron microscopy of thin sections of cells fixed during the repigmentation process.

Both bacteriochlorophyli and the onset of photochemical activity were detected before distinct thylakoids were observed. Subsequent bacteriochlorophyll synthesis was associated with a gradual increase in the thylakoid content throughout the developmental process.

The results obtained strongly indicate that initially the cytoplasmic membrane is modified by pigment incorporation, possibly at specific sites, and that the bacteriochlorophyll is photochemically active in the pigmented cytoplasmic membrane or in the early stages of invagination.

Finally, in a confirmation of previous hypotheses, these studies provide evidence for the origin of the thylakoids as a protrusion and invagination of the cytoplasmic membrane. This is followed by constriction and subsequent proliferation and branching to form a continuous membrane system which gives rise to chromatophores upon cellular disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. van Niel,Bact. Rev.,8 (1944) 1.

    Google Scholar 

  2. G. Cohen-Bazire, W. R. Sistrom and R. Y. Stanier,J. Cellular Comp. Physiol.,49 (1957) 25.

    Google Scholar 

  3. R. A. Cellarius and G. A. Peters,Biochim. Biophys. Acta,189 (1969) 234.

    PubMed  Google Scholar 

  4. R. A. Cellarius and G. A. Peters,Photochem. Photobiol.,7 (1968) 325.

    PubMed  Google Scholar 

  5. J. Oelze, M. Biedermann, E. Freund-Mölbert and G. Drews,Arch. Mikrobiol.,66 (1969) 154.

    PubMed  Google Scholar 

  6. A. Gorchein, A. Neuberger and G. H. Tait,Proc. Roy. Soc. (London), B.,171 (1968) 111.

    Google Scholar 

  7. M. Biedermann, G. Drews, R. Marx and J. Schröder,Arch. Mikrobiol.,56 (1967) 133.

    PubMed  Google Scholar 

  8. J. Lascelles,Biochem. J.,72 (1959) 508.

    PubMed  Google Scholar 

  9. W. R. Sistrom,J. Gen. Microbiol.,28 (1962) 599.

    PubMed  Google Scholar 

  10. W. R. Sistrom,J. Gen. Microbiol.,28 (1962) 607.

    PubMed  Google Scholar 

  11. K. D. Gibson, A. Neuberger and G. H. Tait,Biochem. J.,83 (1962) 539.

    PubMed  Google Scholar 

  12. K. D. Gibson, A. Neuberger and G. H. Tait,Biochem. J.,88 (1963) 325.

    PubMed  Google Scholar 

  13. J. Lascelles and J. F. Szilagyi,J. Gen. Microbiol.,38 (1965) 55.

    PubMed  Google Scholar 

  14. E. Gray,Biochim. Biophys. Acta,138 (1967) 550.

    PubMed  Google Scholar 

  15. J. J. Ferretti and E. D. Gray,J. Bacteriol.,95 (1968) 1400.

    PubMed  Google Scholar 

  16. G. Cohen-Bazire and R. Kunisawa,J. Cell Biol.,16 (1963) 401.

    PubMed  Google Scholar 

  17. E. S. Boatman,J. Cell Biol.,20 (1964) 297.

    PubMed  Google Scholar 

  18. M. C. Karunairatnam, J. Spizizen and H. Gest,Biochim. Biophys. Acta,29 (1958) 649.

    PubMed  Google Scholar 

  19. S. C. Holt and A. G. Marr,J. Bacteriol. 89 (1965) 1402.

    PubMed  Google Scholar 

  20. D. D. Hickman and A. W. Frenkel,J. Cell Biol.,25 (1965) 279.

    PubMed  Google Scholar 

  21. J. Oelze, M. Biedermann and G. Drews,Biochim. Biophys. Acta,173 (1969) 436.

    PubMed  Google Scholar 

  22. J. Oelze and G. Drews,Biochim. Biophys. Acta,173 (1969) 448.

    Google Scholar 

  23. H. K. Schachman, A. B. Pardee and R. Y. Stanier,Arch. Biochem. Biophys.,38 (1952) 245.

    PubMed  Google Scholar 

  24. A. E. Vatter and R. S. Wolfe,J. Bacteriol.,75 (1958) 480.

    PubMed  Google Scholar 

  25. A. Gorchein, A. Neuberger and G. H. Tait,Proc. Roy. Soc. (London), B,170 (1968) 224.

    Google Scholar 

  26. P. B. Worden and W. R. Sistrom,J. Cell Biol.,23 (1964) 135.

    PubMed  Google Scholar 

  27. K. D. Gibson,J. Bacteriol.,90 (1965) 1059.

    PubMed  Google Scholar 

  28. M. Sporn, T. Wanko and W. Dingman,J. Cell Biol.,15 (1962) 109.

    PubMed  Google Scholar 

  29. G. A. Peters, Thesis, Univ. of Mich., 1970.

  30. G. Millonig,J. Biophys. Biochem. Cytol.,11, (1961) 736.

    PubMed  Google Scholar 

  31. G. Cohen-Bazire and R. Kunisawa,Proc. Nat. Acad. Sci. U.S.,46 (1960) 1543.

    Google Scholar 

  32. Th. Förster,Disc. Faraday Soc.,27 (1959) 7.

    Google Scholar 

  33. A. Gorchein,Proc. Roy. Soc. (London), B,170 (1968) 247.

    Google Scholar 

  34. S. C. Holt and A. G. Marr,J. Bacteriol.,89 (1965) 1421.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Extracted in part from the doctoral thesis of G. A. Peters submitted to the University of Michigan in partial fulfillment of the requirements for the Ph.D. degree. For paper I of this series see reference [3].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, G.A., Cellarius, R.A. Photosynthetic membrane development inRhodopseudomonas spheroides . J Bioenerg Biomembr 3, 345–359 (1972). https://doi.org/10.1007/BF01516074

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01516074

Keywords

Navigation