Skip to main content
Log in

Disassembly of microtubules in the lesch-nyhan syndrome?

Assoziationsstörung für Mikrotubuli beim Lesch-Nyhan Syndrom? (Lesch-Nyhan Syndrom und Mikrotubuli)

Lesch-nyhan syndrome and microtubules

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Das Lesch-Nyhan Syndrom ist ein ungewöhnliches Krankheitsbild. Es verbindet neurologische Symptomatik mit Verhaltensstörungen, Stoffwechselveränderungen und hämatologischen Symptomen. Das Syndrom ist durch einen X-chromosomal vererbten Enzymdefekt im „salvage pathway“ des Purinstoffwechsels charakterisiert. Die bisher völlig ungeklärte Pathogenese war Anlaß zu metabolischen und morphologischen Untersuchungen an den Blutzellen eines Patienten mit diesem Syndrom. Zusammen mit der genetisch bedingten Störung im Guanin-Nukleotidstoffwechsel konnte ein weitgehendes Fehlen der Mikrotubuli in den Blutplättchen und eine Sphärozytose der Erythrozyten nachgewiesen werden. Diese Veränderungen sind offenbar Folge einer Assoziationsstörung für Strukturproteine. Auch die Ausbildung und Aufrechterhaltung der hochgradig heteromorphen Struktur von Nervenzellen und ihre Funktion mit axonalem Transport von Zellorganellen und Neurotransmitterstoffen ist von mikrotubulären Strukturproteinen abhängig. Eine Assoziationsstörung von Mikrotubuli könnte damit den der Pathogenese dieses komplexen Syndroms zugrunde liegenden Mechanismus darstellen.

Summary

The Lesch-Nyhan syndrome is an unusual disease. It combines neurological disorders, behavioural disturbances, metabolic changes and haematological symptoms. The syndrome is caused by an X-chromosomal transmitted enzyme deficiency of the ‘salvage pathway’ in purine metabolism. The hitherto unexplained pathogenesis was the reason for investigations into metabolism and morphology of the blood cells of a patient suffering from the syndrome. Along with the defect in guanine nucleotide resynthesis there was a defect of microtubules in platelets and a sphaerocytosis in red cells, which could be the result of a disassembly of structural proteins. The development and maintenance of the highly heteromorphic structure of nerve cells and the neuronal function including axonal transport of cell organelles and transmitters is dependent on microtubules. Thus a disassembly of microtubules could be the mechanism in the pathogenesis of this complex syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Nyhan WL: Clinical features of the Lesch-Nyhan Syndrom. Arch Intern Med130, 186–192 (1972)

    PubMed  Google Scholar 

  2. Nyhan WL: The Lesch-Nyhan Syndrome. Ann Rev Med24, 41–60 (1973)

    PubMed  Google Scholar 

  3. Seegmiller JE: Inherited deficiency of hypoxanthine-guanine phosphoribosyltransferase in x-linked uric aciduria (the Lesch-Nyhan syndrome and its variants). Adv hum Genet6, 75–163 (1976)

    PubMed  Google Scholar 

  4. Balis ME: Uric acid metabolism in man. Adv Clin Chem18, 213–246 (1976)

    PubMed  Google Scholar 

  5. Henderson JF: Purine nucleotide metabolism in mammalian cells. Biochem Soc Transact3, 1195–1198 (1975)

    Google Scholar 

  6. Murray AW: The biological significance of purine salvage. Ann Rev Biochem40, 811–826 (1971)

    PubMed  Google Scholar 

  7. Murray AW, Elliot DC, Atkinson MR: Nucleotide biosynthesis from preformed purines in mammalian cells: regulatory mechanism and biological significance. Progr Nucl Res Mol Biol10, 87–119 (1970)

    Google Scholar 

  8. Wyngaarden JB: Regulation of purine biosynthesis and turnover. Adv Enz Regul14, 25–42 (1976)

    Google Scholar 

  9. Raivio KO, Seegmiller JE: Adenine, hypoxanthine and guanine metabolism in fibroblasts from normal individuals and from patients with hypoxanthine phosphoribosyltransferase deficiency. Biochim Biophys Acta299, 273–282 (1973)

    PubMed  Google Scholar 

  10. Raivio KO, Seegmiller JE: Role of glutamine in purine synthesis and in guanine nucleotide formation in normal fibroblasts and in fibroblasts deficient in hypoxanthine phosphoribosyl-transferase activity. Biochim Biophys Acta299, 283–292 (1973)

    PubMed  Google Scholar 

  11. Mizuno, T, Endoh H, Konishi Y, Miyachi Y, Akaoka J: An autopsy case of the Lesch-Nyhan Syndrome: normal HGPRT activity in liver and xanthine calculi in various tissues. Neuropädiatrie7, 351–355 (1976)

    Google Scholar 

  12. Weber, G: Enzymology of cancer cells. New Engl J Med296, 486–493, 541–551 (1977)

    PubMed  Google Scholar 

  13. Schneider W, Doenecke C, Scheurlen PG: Detection of thymidine-phosphorylase in human blood platelets. Klin Wschr51, 287–288 (1973)

    PubMed  Google Scholar 

  14. Wilmanns W: Die Thymidin-Kinase in normalen und leukämischen myeloischen Zellen. Klin Wschr45, 505–511 (1967)

    PubMed  Google Scholar 

  15. Jackson RC, Weber G: IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature256, 331–333 (1975)

    PubMed  Google Scholar 

  16. Pehlke DM, McDonald JA, Holmes EW, et al: Inosinic acid dehydrogenase activity in the Lesch-Nyhan Syndrome. J clin Invest51, 1398–1404 (1972)

    PubMed  Google Scholar 

  17. Weber G, Prajda N, Jackson RC: Key enzymes of IMP-metabolism: Transformation- and proliferation-linked alterations in gene expression. Adv Enz Regul14, 3–23 (1976)

    Google Scholar 

  18. Shimizu H, Daly JW, Creveling CR: A radioisotopic method for measuring the formation of adenosine 3', 5'-cyclic monophosphate in incubated slices of brain. J Neurochem16, 1609–1619 (1969)

    PubMed  Google Scholar 

  19. Schneider W, Morgenstern E, Schindera I: Lesch-Nyhan-Syndrom ohne Selbstverstümmelungstendenz. Dtsch Med Wochenschr101, 167–172 (1976)

    PubMed  Google Scholar 

  20. Murray AW, Friedrichs B: Thymidin-Triphosphat als Inhibitor der 5'Nukleotidase. Biochem J111, 83 (1969)

    PubMed  Google Scholar 

  21. Stockinger LM, Weissel M, Lechner K: Thrombozytenpraeparation und Auswertung. Mikroskopie25, 262 (1968)

    Google Scholar 

  22. Behnke CF: Mikrotubules in disk-shaped blood cells. Int Rev of Exp Path9, 1–91 (1970)

    Google Scholar 

  23. Jacobs HS: Dysfunctions of the red cell membrane. In: The Red Blood Cell. Edited by DM Surgenor

  24. Schneider W, Morgenstern E: Das Lesch-Nyhan-Syndrom, ein geheimnisvolles Leiden? In: K. Schumacher und K.D. Grosser, Hrsg.: Aktuelle Probleme der Inneren Medizin. Stuttgart-New York: Schattauer Verlag 1977 S. 223–248

    Google Scholar 

  25. Balis ME, Yip LC, Yu TF, et al.: Unstable HPR Tase in subjects with abnormal urinary oxypurine excretion. Adv exp Med Biol41 A, 195–202 (1975)

    Google Scholar 

  26. Yip LC, Dancis J, Balis ME: Immunochemical studies of AMP: pyrophosphate phosphoribosyltransferase from normal and Lesch-Nyhan subjects. Biochim Biophys Acta293, 359–369 (1973)

    PubMed  Google Scholar 

  27. Morgenstern E: Feinstruktur der Thrombozytopoese und ihre Störungen. In: Elektronenmikroskopische Hämatologie. Edited by F Ruzicka. Wien: Springer-Verlag 1976, pp 164–196

    Google Scholar 

  28. Bardele CF: Struktur, Biochemie und Funktion der Mikrotubuli. Cytobiologie7, 442–488 (1973)

    Google Scholar 

  29. Bryan J: Biochemical properties of microtubules. Fed Proc33, 152–157 (1974)

    PubMed  Google Scholar 

  30. Olmstedt JB, Borisy GG: Microtubules. Ann Rev Biochem42, 507–540 (1973)

    PubMed  Google Scholar 

  31. Soifer D: The biology of cytoplasmic microtubules. Ann NY Acad Sci253 (1975)

  32. Snyder JA, McIntosch JR: Biochemistry and physiology of microtubules. Ann Rev Biochem 699–720 (1976)

  33. Stephans RE, Edde KT: Microtubules: structure, chemistry and function. Physiol Rev56, 709–777 (1976)

    PubMed  Google Scholar 

  34. Jerushalmy Z, Sperling O, Pinkhas J, et al.: Phosphoribosyltransferase in human and rabbit blood platelets. Haemostasis1, 279–284 (1972/73)

    PubMed  Google Scholar 

  35. Rivard GE, Izadi P, Lazerson J, et al.: Functional and metabolic studies of platelets from patients with Lesch-Nyhan Syndrome. Brit J Haematol31, 245–253 (1975)

    Google Scholar 

  36. Wuerker RB, Kirkpatrick JB: Neuronal microtubules, neurofilaments and microfilaments. Intern Rev Cytol33, 45–75 (1972)

    Google Scholar 

  37. Dahlström A, Heiwall PO, Häggendal J, et al.: Effect of antimititic drugs on the intraaxonal transport of neurotransmitters in rat adrenergic and cholinergic nerves. Ann NY Acad Sci253, 507–516 (1975)

    PubMed  Google Scholar 

  38. Daniels M: The role of microtubules in the growth and stabilization of nerve fibers. Ann NY Acad Sci253, 535–544 (1975)

    PubMed  Google Scholar 

  39. Kreutzberg GW: Neuronal dynamics and axonal flows. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc Natl Acad Sci USA62, 722–728 (1969)

    PubMed  Google Scholar 

  40. Mizel StB, Wilson L: Nucleoside transport in mammalian cells. Inhibition by colchicine. Biochemistry11, 2573–2578 (1972)

    PubMed  Google Scholar 

  41. Schubert P, Kreutzberg GW: Dentritic and axonal transport of nucleoside derivates in single motoneurons and release from dendrites. Brain Res90, 319–323 (1975)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, W., Morgenstern, E. & Reimers, H.J. Disassembly of microtubules in the lesch-nyhan syndrome?. Klin Wochenschr 57, 181–186 (1979). https://doi.org/10.1007/BF01477406

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01477406

Schlüsselwörter

Key words

Navigation