Skip to main content
Log in

A critical evaluation of low-energy electron impact cross sections for plasma processing modeling. I: Cl2, F2, and HCl

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The available information on low-energy electron impact cross sections for Cl2, F2, and HCAl is reviewed and critically evaluated. Of interest are the cross sections for momentum transfer; rotational, vibrational, and electronic excitation (with possible dissociation); and attachment and ionization. The bulk of the data available for these molecules are on dissociative attachment, as that is the property, that has been of greatest interest in applications and is relatively easy to measure. Much of the process of critical evaluation is performed by computing electron transport, or swarm, coefficients using the published cross sections and comparing with published measurements. What little is known about electronic excitation or dissociation processes is theoretical or even guessed at using analogies to processes in other molecules. Recommended cross sections are identified where feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rokni and J. H. Jacob, inApplied Atomic Collision Physics, Vol. 3: Gas Lasers, H. S. W. Massey, E. W. McDaniel, and B. Bederson, eds., Academic Press, New York (1982), p. 273.

  2. W. L. Nighan, ibid., p. 319.

  3. M. R. Flannery, ibid., p. 141.

  4. D. R. Bates,Adv. At. Mol. Phys. 20, 1 (1985).

    Google Scholar 

  5. D. M. Manos and D. L. Flamm,Plasma Etching, Academic Press, Boston (1989).

    Google Scholar 

  6. L. E. Kline and M. J. Kushner,Crit. Rev. Solid State Mater. Sci. 16, 1 (1989).

    Google Scholar 

  7. L. G. Christophorou, ed.,Electron-Molecule Interactions and Their Applications, Academic Press, Orlando (1984).

    Google Scholar 

  8. L. C. Pitchford, B. V. McKoy, A. Chutjian, and S. Trajmar, eds.,Swarm Studies and Inelastic Electron-Molecule Collisions, Springer-Verlag, New York (1987).

    Google Scholar 

  9. A. V. Phelps,Rev. Mod. Phys. 40, 399 (1968).

    Google Scholar 

  10. I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynski,The Particle Kinetics of Plasmas, Addison-Wesley, Reading, Massachusetts (1966).

    Google Scholar 

  11. L. G. H. Huxley and R. W. Crompton,The Diffusion and Drift of Electrons in Gases, Wiley, New York (1974).

    Google Scholar 

  12. A. V. Phelps, in L. C. Pitchford,et al., op. cit., p. 127.

  13. T. Taniguchi, M. Suzuki, K. Kawamura, F. Noto, and H. Tagashira,J. Phys. D 20, 1085 (1987).

    Google Scholar 

  14. W. L. Morgan,IEEE Trans. Plasma Sci. 19, 250 (1991).

    Google Scholar 

  15. W. L. Morgan,Phys. Rev. A 44, 1677 (1991).

    Google Scholar 

  16. W. L. Morgan, submitted toJ. Phys. B.

  17. W. L. Morgan, JILA Information Center Report No. 19, University of Colorado (1979).

  18. W. L. Morgan and B. M. Penetrante,Comp. Phys. Commun. 58, 127 (1990).

    Google Scholar 

  19. P. Segur, M. Yousfi, M. H. Kadri, and M. C. Bordage,Transport Theory Stat. Phys. 15, 705 (1986).

    Google Scholar 

  20. P. Segur, M.-C. Bordage, and M. Yousfi, in L. C. Pitchfordet al., op. cit., p. 3.

  21. M. C. Bordage, A. Chouki, and P. Segur, XX International Conference on Phenomena in Ionized Gases, Pisa, Italy, July 1991.

  22. M. C. Bordage, private communication.

  23. M. A. Morrison, R. W. Crompton, B. C. Saha, andZ. Lj. Petrović, Aust. J. Phys. 40, 239 (1987).

    Google Scholar 

  24. R. W. Crompton and M. A. Morrison, in L. C. Pitchfordet al., op. cit., p. 143.

  25. R. W. Crompton, M. T. Elford, and A. G. Robertson,Aust. J. Phys. 23, 667 (1970).

    Google Scholar 

  26. G. N. Haddad and T. F. O'Malley,Aust. J. Phys. 35, 35 (1982).

    Google Scholar 

  27. M. Schaper and H. Scheibner,Beim Plasmaphys. 9, 45 (1969).

    Google Scholar 

  28. A. V. Phelps and L. C. Pitchford, JILA Information Center Report No. 26, University of Colorado (1985);Phys. Rev. A 31, 2932 (1985).

  29. A. V. Phelps, JILA Information Center Report No. 28, University of Colorado (1985).

  30. S. J. Buckman and A. V. Phelps, JILA Information Center Report No. 27, University of Colorado (1985);J. Chem. Phys. 82, 4999 (1985).

  31. Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi,J. Phys. Chem. Ref. Data 15, 985 (1986).

    Google Scholar 

  32. Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi,J. Phys. Chem. Ref. Data 18, 23 (1989).

    Google Scholar 

  33. H. Tawara, Y. Itikawa, H. Nishimura, and M. Yoshino,J. Phys. Chem. Ref. Data 19, 617 (1990).

    Google Scholar 

  34. Y. Ohmori, M. Shimozuma, and H. Tagashira,J. Phys. D 21, 724 (1988).

    Google Scholar 

  35. G. L. Rogoff, J. M. Kramer, and R. B. Piejak,IEEE Trans. Plasma Sci. PS-14, 103 (1986).

    Google Scholar 

  36. W.-C. Tam and S. F. Wong,J. Chem. Phys. 68, 5626 (1978).

    Google Scholar 

  37. M. V. Kurepa and D. S. Belié,J. Phys. B 11, 3719 (1978).

    Google Scholar 

  38. S. E. Božin and C. C. Goodyear,Br. J. Appl. Phys. 18, 49 (1967).

    Google Scholar 

  39. R. C. Sze, A. E. Greene, and C. A. Brau,J. Appl. Phys. 53, 1312 (1982).

    Google Scholar 

  40. M. Rokni, J. H. Jacob, and J. A. Mangano,Appl. Phys. Left. 34, 187 (1979).

    Google Scholar 

  41. D. L. McCorkle, A. A. Christodoulides, and L. G. Christophorou,Chem. Phys. Lett. 109, 276 (1984).

    Google Scholar 

  42. G. D. Sides, T. O. Tiernan, and R. I. Hanrahan,J. Chem. Phys. 65, 1966 (1976).

    Google Scholar 

  43. V. A. Bailey and R. H. Healey,Philos. Mag. 19, 75 (1935).

    Google Scholar 

  44. J. Dutton,J. Phys. Chem. Ref. Data 4, 577 (1975).

    Google Scholar 

  45. J. W. Gallagher, E. C. Beaty, J. Dutton, and L. C. Pitchford,J. Phys. Chem. Ref. Data 12, 109 (1983).

    Google Scholar 

  46. P. C. Cosby,Bull. Am. Phys. Soc. 35, 1822 (1990).

    Google Scholar 

  47. R. E. Center and A. Mandl,J. Chem. Phys. 57, 4104 (1972).

    Google Scholar 

  48. F. A. Stevie and M. J. Vasile,J. Chem. Phys. 74, 5106 (1981).

    Google Scholar 

  49. K. J. Nygaard, J. Fletcher, S. R. Hunter, and S. R. Foltyn,Appl. Phys. Lett. 32, 612 (1978).

    Google Scholar 

  50. M. Hayashi and T. Nimura,J. Appl. Phys. 54, 4879 (1983).

    Google Scholar 

  51. P. J. Chantry,Bull. Am. Phys. Soc. 24, 134 (1979).

    Google Scholar 

  52. P. J. Chantry, inApplied Atomic Collision Physics, Vol. 3, E. W. McDaniel and W. L. Nighan, eds., Academic Press, New York (1982), p. 35.

    Google Scholar 

  53. A. U. Hazi, A. E. Orel, and T. N. Rescigno,Phys. Rev. Lett. 46, 918 (1981).

    Google Scholar 

  54. P. Mahadevan and R. Hofland,Bull. Am. Phys. Soc. II 21, 575 (1976).

    Google Scholar 

  55. H.-L. Chen, R. E. Center, D. W. Trainor, and W. I. Fyfe,Appl. Phys. Lett. 30, 99 (1977).

    Google Scholar 

  56. H.-L. Chen, private communication (1979); see also Chantry, Ref. 48.

  57. R. J. Hall,J. Chem. Phys. 68, 1803 (1978).

    Google Scholar 

  58. J. N. Bardsley and J. M. Wadehra,J. Chem. Phys. 78, 7227 (1983).

    Google Scholar 

  59. D. L. McCorkle, L. G. Christophorou, A. A. Christodoulides, and L. Pichiarella,J. Chem. Phys. 85, 1966 (1986).

    Google Scholar 

  60. A. Chutjian and S. H. Alajajian,Phys. Rev. A 35, 4512 (1987).

    Google Scholar 

  61. B. I. Schneider and C. A. Brau,Appl. Phys. Lett. 33, 569 (1978).

    Google Scholar 

  62. K. J. Nygaard, J. Fletcher, S. R. Hunter, S. R. Folytn,Appl. Phys. Lett. 32, 612 (1978).

    Google Scholar 

  63. D. W. Trainor and J. H. Jacob,Appl. Phys. Lett. 35, 920 (1979).

    Google Scholar 

  64. B. I. Schneider and P. J. Hay,Phys. Rev. A 13, 2049 (1976).

    Google Scholar 

  65. T. N. Rescigno, C. F. Bender, C. W. McCurdy, and V. McKoy,J. Phys. B 9, 2141 (1976).

    Google Scholar 

  66. T. N. Rescigno, C. F. Bender, and B. V. McKoy,Chem. Phys. Lett. 45, 307 (1977).

    Google Scholar 

  67. A. W. Fliflet, V. McKoy, and T. N. Rescigno,Phys. Rev. A 21, 788 (1980).

    Google Scholar 

  68. A. U. Hazi,Phys. Rev. A 23, 2232 (1981).

    Google Scholar 

  69. B. H. Lengsfield III and T. N. Rescigno,Phys. Rev. A 44, 2913 (1991).

    Google Scholar 

  70. J. Wilson, H.-L. Chen, W. Fyfe, R. L. Taylor, R. Little, and R. Lowell,J. Appl. Phys. 44, 5447 (1973).

    Google Scholar 

  71. H.-L. Chen, R. E. Center, D. W. Trainor, and W. I. Fyfe,J. Appl. Phys. 48, 2297 (1977).

    Google Scholar 

  72. W. L. Morgan and A. Szöke,Phys. Rev. A 23, 1256 (1981).

    Google Scholar 

  73. M. Hayashi, inSwarm Studies and Inelastic Electron-Molecule Collisions, L. C. Pitchford, B. V. McKoy, A. Chutjian, and S. Trajmar, eds., Springer-Verlag, New York (1987), p. 101.

    Google Scholar 

  74. D. K. Davies, Report No. AFWAL-TR-82-2083 (1982).

  75. B. M. Penetrante and J. N. Bardsley,J. Appl. Phys. 54, 6150 (1983).

    Google Scholar 

  76. C. L. Chen and P. J. Chantry, unpublished.

  77. M. Alan and S. F. Wong,J. Chem. Phys. 74, 1687 (1981).

    Google Scholar 

  78. O. J. Orient and S. K. Srivastava,Phys. Rev. A 32, 2678 (1985).

    Google Scholar 

  79. D. Kligler, Z. Rozenberg, and M. Rokni,Appl. Phys. Lett. 39, 319 (1981).

    Google Scholar 

  80. Z. Li. Petrović, W. C. Wang, and L. C. Lee,J. Appl. Phys. 64, 1625 (1988).

    Google Scholar 

  81. L. Christophorou, R. N. Compton, and H. W. Dickson,J. Chem. Phys. 48, 1949 (1968).

    Google Scholar 

  82. O. J. Orient and S. K. Srivastava,J. Chem. Phys. 78, 2949 (1983).

    Google Scholar 

  83. L. G. Christophorou, D. L. McCorkle, and A. A. ChristodouIides, in L. G. Christophorou, ed.,op. cit., p. 477.

  84. R. S. Freund and R. C. Wetzel,Phys. Rev. A 41, 5861 (1990).

    Google Scholar 

  85. R. D. Hake, Jr. and A. V. Phelps,Phys. Rev. 158, 70 (1967).

    Google Scholar 

  86. N. T. Padial, D. W. Notcross, and L. A. Collins,Phys. Rev. A 27, 141 (1983).

    Google Scholar 

  87. N. T. Padial and D. W. Notcross,Phys. Rev. A 29, 1590 (1984).

    Google Scholar 

  88. K. Takayanagi,J. Phys. Soc. Jpn. 21, 507 (1966).

    Google Scholar 

  89. K. Rohr and F. Linder,J. Phys. B 8, L200 (1975).

    Google Scholar 

  90. K. Rohr and F. Linder,J. Phys. B 9, 2521 (1976).

    Google Scholar 

  91. G. Knoth, M. Radle, M. Gote, H. Ehrhardt, and K. Jung,J. Phys. B 22, 299 (1989).

    Google Scholar 

  92. G. Knoth, M. Gote, M. Radle, F. Leber, K. Jung, and H. Ehrhardt,J. Phys. B 22, 2797 (1989).

    Google Scholar 

  93. N. F. Lane,Rev. Mod. Phys. 52, 29 (1980).

    Google Scholar 

  94. D. W. Notcross, in L. C. Pitchfordet al., eds., op. cit., p. 217.

  95. M. A. Morrison,Adv. At. Mol. Phys. 24, 51 (1988).

    Google Scholar 

  96. W. Domcke and C. Mundel,J. Phys. B 18, 4491 (1985).

    Google Scholar 

  97. L. A. Morgan, P. G. Burke, and C. J. Gillan,J. Phys. B 23, 99 (1990).

    Google Scholar 

  98. W. L. Morgan and M. J. Pound,Bull. Am. Phys. Soc. 26, 722 (1981).

    Google Scholar 

  99. W. L. Morgan, N. W. Winter, and K. C. Kulander, UCRL-50021-80, Lawrence Livermore National Laboratory (1981), p.844.

  100. W. L. Nighan and R. T. Brown,Appl. Phys. Left. 36, 498 (1980).

    Google Scholar 

  101. F. Kannari, W. D. Kimura, and J. J. Ewing,J. Appl. Phys. 68, 2615 (1990).

    Google Scholar 

  102. R. E. Center, J. H. Jacob, M. Rokni, and Z. Rozenberg,Appl. Phys. Lett. 41, 116 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, W.L. A critical evaluation of low-energy electron impact cross sections for plasma processing modeling. I: Cl2, F2, and HCl. Plasma Chem Plasma Process 12, 449–476 (1992). https://doi.org/10.1007/BF01447254

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447254

Key words

Navigation