Skip to main content
Log in

The atmospheric water vapor continuum below 300 GHz

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Absolute attenuation rates due to water vapor and moist nitrogen have been measured in the laboratory at 138 GHz, 282 and 300 K, pressures up to 1.5 atm, and relative humidities from 80 to 100 percent. The computer-controlled measuring system is comprised of a millimeter wave resonance spectrometer (0.15 km effective path length) and a humidity simulator. Several shortcomings of earlier measurement attempts have been rectified. The data are interpreted as a water vapor continuum spectrum consisting of two terms, namely strong self-broadening (H2O−H2O) plus foreign-gas-broadening (H2O−N2) contributions. Implications of the new results for modeling atmospheric EHF window transparencies and for revising established H2O line broadening theory are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Liebe, Radio Sci.,16(6), 1183–1199 (1981).

    Google Scholar 

  2. H. J. Liebe, IEEE Trans. Ant. Prop., AP-31(1), 127–135 (1983).

    Google Scholar 

  3. URSI Commission, URSI Working Party Report, Radio Sci.16(5), 825–829 (1981).

    Google Scholar 

  4. A. Deepak et al. (Eds.)Atmospheric Water Vapor, 1980 Academic Press, New York. Papers by:

    Google Scholar 

  5. D. E. Burch and D. A. Gryvnak, A. Deepak et al. (Eds.)Atmospheric Water Vapor, 1980 Academic Press, New York, 77–100

    Google Scholar 

  6. R. J. Nordstrom and M. E. Thomas, A. Deepak et al. (Eds.)Atmospheric Water Vapor, 1980 Academic Press, New York, 101–112

    Google Scholar 

  7. H. A. Gebbie, A. Deepak et al. (Eds.)Atmospheric Water Vapor, 1980 Academic Press, New York, 122–142

    Google Scholar 

  8. H. J. Liebe, A. Deepak et al. (Eds.)Atmospheric Water Vapor, 1980 Academic Press, New York, 143–202

    Google Scholar 

  9. D. C. Hogg, A. Deepak et al. (Eds.)Atmospheric Water Vapor, 1980 Academic Press, New York, 219–228

    Google Scholar 

  10. R. A. Bohlander et al., A. Deepak et al. (Eds.),Atmospheric Water Vapor, 1980 Academic Press, New York, 241–254

    Google Scholar 

  11. D. T. Llewellyn-Jones, A. Deepak et al. (Eds.)Atmospheric Water Vapor, 1980 Academic Press, New York. 255–264

    Google Scholar 

  12. S. A. Clough et al., A. Deepak et al. (Eds.)Atmospheric Water Vapor, 1980 Academic Press, New York. 25–46.

    Google Scholar 

  13. L. S. Rothman, R. R. Gamache, A. Barbe, A. Goldman, J. R. Gillis, L. R. Brown, R. A. Toth, J.-M. Flaud, and C. Camy-Peyret, Appl. Opt.22(12), 2247–2256 (1983).

    Google Scholar 

  14. J. M. Flaud, C. Camy-Peyret, and R. A. Toth,Water Vapor Line Parameters from Microwave to Medium Infrared, Pergamon Press, Oxford, England (1981).

    Google Scholar 

  15. M. Mizushima, Int. J. Infrar. Millimeter Waves,3(3), 379–384 (1982).

    Google Scholar 

  16. R. L. Poynter and H. M. Pickett, JPL Publication 80-28, Rev. 1, Jet Propulsion Lab., NASA, Pasadena, CA (1981).

    Google Scholar 

  17. M. E. Thomas and R. J. Nordstrom, J. Quant. Spectrosc. Radiat. Trans.,28(2), 81–112 (1982).

    Google Scholar 

  18. D. E. Burch, Ford Aerospace and Communications Corp., Aeronutronic Div., Final Report AFGS-TR-81-0300 (March 1982).

  19. G. E. Becker and S. H. Autler, Phys. Rev.70, 300–307 (1946).

    Google Scholar 

  20. L. Frenkel and D. Woods, Proc. IEEE54, 498–505 (1966).

    Google Scholar 

  21. C. O. Hemmi and A. W. Straiton, Radio Sci.4, 9–15 (1969).

    Google Scholar 

  22. D. Mrowinski, Z. Angew. Phys.29, 323–330 (1970) and Ph.D. Thesis 1969, D83 TU, Berlin.

    Google Scholar 

  23. H. J. Liebe and T. A. Dillon, J. Chem. Phys.50(2), 727–732 (1969).

    Google Scholar 

  24. H. J. Liebe, OT Report75-65, (NTIS Acces. No. COM 75-10096/AS) (June 1975).

  25. D. T. Llewellyn-Jones, R. J. Knight and H. A. Gebbie, Nature274(5674), 876–878 (1978).

    Google Scholar 

  26. A. Y. Zrazhevskiy, Radio Eng. & Electr. Phys.21(5), 31–36 (1976) and22(1), 128–129 (1977).

    Google Scholar 

  27. K. A. Aganbekjan and A. Y. Zrazhevskiy, A study of submm. radiation absorption in pure water vapor and in mixtures with N2, CO2 and Ar, Private Communication (1982).

  28. R. J. Hill, R. S. Lawrence and J. T. Priestley, Radio Sci.,17(5), 1251–1257 (1982).

    Google Scholar 

  29. C. C. Zammit and P. A. Ade, Nature293(5833), 550–552 (1981); and C. C. Zammit, R. E. Hill and R. W. Baker, Int. J. Infrar. Millimeter Waves,3(2), 189–203 (1982).

    Google Scholar 

  30. G. Birnbaum, J. Quant. Spectr. Radiat. Transf.21, 597–607 (1979).

    Google Scholar 

  31. D. T. Llewellyn-Jones and R. J. Knight, IEEE Conf. Publ.195, 81–83 (1981).

    Google Scholar 

  32. R. J. Knight and D. T. Llewellyn-Jones, Rutherford Appleton Laboratory Research Note RL-82-051 (July 1982).

  33. H. J. Liebe, A physically-based mm wave propagation model, NTIA Report, to be published.

  34. H. J. Liebe and D. H. Layton, Proc. URSI Com. F 1983 Symp., Louvain-La-Neuve, Belgium (ESA SP-194).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was supported in part by the U.S. Army Research Office under Contract AR0 101-83.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebe, H.J. The atmospheric water vapor continuum below 300 GHz. Int J Infrared Milli Waves 5, 207–227 (1984). https://doi.org/10.1007/BF01417651

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01417651

Key Words

Navigation