Skip to main content
Log in

Etching and the morphology of branched and cross-linked polyethylene

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A permanganic acid etching technique was used to characterize the genuine morphologies of bulk crystallized samples of linear, branched, and crosslinked polyethylene. Four different kinds of artifacts as large as 15–20 μm were detected. It was also noted that artifact density could be drastically reduced by proper selection of etching conditions. The morphologies of artifacts were independent of specimen crystallinity and the orientation of lamellar crystals; however, their rate of production was susceptible to the crystallinity of samples. The formation of a fresh surface involved the preferential etching of edge-on and secondary lamellae. As the growth features of cross-linked polyethylene were less than 6 μm and were mainly sheaf-like structures, growth features could be readily distinguished from the artifacts by transmission electron microscopy. Another type of artifact (globules morphology) produced at angstrom scale was found to depend on the crystallinity and the surface structure of lamellar crystals. It is demonstrated that the fine lamellar details of branched and cross-linked polyethylene can be observed using transmission electron microscopy. Increasing the number of cross-links in polyethylene, modifies the size and nature of supermolecular structures, the periodic twisting of lamellar crystals, and the nature of the nucleation process. The study of a blend of branched and cross-linked polyethylene showed that the structurally dissimilar molecules co-crystallized at low crystallization temperatures, while there is a tendency for molecular fractionation at higher crystallization temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gohil RM, Patel KC, Patel RD (1972) Angew Makromol Chemie 25:83

    Google Scholar 

  2. Gohil RM, Patel KC, Patel RD (1976) Colloid & Polym Sci 254:859

    Google Scholar 

  3. Gohil RM, Petermann J (1979) J Polym Sci Phys Ed 17:525

    Google Scholar 

  4. Gohil RM, Petermann J (1981) Polymer 22:1612

    Google Scholar 

  5. Wegner G, Zhu Li-Lan, Lieser G, Tu Hsuch-Li (1981) Makromol Chem 182:231

    Google Scholar 

  6. Kato KJ, J Polym Sci Letter Ed 4:35

  7. Kanig G (1974) Kunststoffe 64:470

    Google Scholar 

  8. Olley RH, Hodge AM, Bassett DC (1979) J Polym Sci Phys Ed 17:627

    Google Scholar 

  9. Bassett DC (1981) Principles of Polymer Morphology, Cambridge University Press, Cambridge

    Google Scholar 

  10. Grubb DT, Diugosz J, Keller A (1975) J Mat Sci 10:1826

    Google Scholar 

  11. Mandelkern L, Glotin M, Benson RS (1981) Macromolecules 14:22

    Google Scholar 

  12. Bubeck RA, Baker HM (1980) Polymer 21:1678

    Google Scholar 

  13. Olley RH, Bassett DC (1982) Polymer 23:1707

    Google Scholar 

  14. Naylor KL, Phillips PJ (1983) J Polym Sci Phys Ed 21:2011

    Google Scholar 

  15. Bamji S, Bulinski A, Densley J, Garton A (1983) IEEE Trans Elect Insul EI 18:32

    Google Scholar 

  16. Gielenz G, Jungnickel BJ (1982) Colloid & Polym Sci 260:742

    Google Scholar 

  17. Heise B, Kilian HG, Schmidt H (1981) Colloid & Polym Sci 259:611

    Google Scholar 

  18. Kitamaru R, Hyon SH (1979) J Polym Sci Macromolecular Reviews 14:207

    Google Scholar 

  19. Strobl GR, Schneider MJ, Voight-Martin IG (1980) J Polym Sci Phys Ed 18:1361

    Google Scholar 

  20. Nunes SL, Shaw MT (1980) IEEE Trans Electr Insul IE 15:437

    Google Scholar 

  21. Capaccio G, Golz W, Rose LJ (1985) ETG Fachberichte 16:123, ISBN 3-8007-1426-4

    Google Scholar 

  22. Barnes SR (1980) Polymer 21:723

    Google Scholar 

  23. Grzybowski S, Zubielik R, Kuffel E (1980) Conference Record IEEE Int Sym Electr Insul, p 200

  24. Grzybowski S, Robles E, Dorlanne O (1982) Conference Record IEEE Int Sym Trans Electr Insul, p 287

  25. Mizukami T, Takhsaki K, Ikeda C, Kato N, Yoda B (1976) IEEE Transactions on Power and System 95:467

    Google Scholar 

  26. Muccigrosso JJ, Phillips PJ (1978) IEEE Trans Electr Insul EI 13:172

    Google Scholar 

  27. Muccigrosso JJ, Phillips PJ (1978) Coat Plast Prepr 38:424

    Google Scholar 

  28. Brower DV, Naylor KL, Phillips PJ (1980) CEIDP Nat Acad Sci pp 113

  29. Golz W (1985) Colloid & Polym Sci 263:286

    Google Scholar 

  30. Gohil RM, Patel KC, Patel RD (1974) Colloid & Polym Sci 252:358

    Google Scholar 

  31. Gohil RM, Patel KC, Patel RD (1976) Eur Polym J 12:477

    Google Scholar 

  32. Gohil RM, Patel KC, Patel RD (1973) Angew Makromol Chemie 31:161

    Google Scholar 

  33. Gohil RM, Phillips PJ, Prepared for publication

  34. Peterman J, Gohil RM (1979) J Macromol Sci-Phys 16:177

    Google Scholar 

  35. Norton DR, Keller A (1984) J Mat Sci 19:447

    Google Scholar 

  36. Gohil RM, Patel RD (1977) Die Stärke 29:9

    Google Scholar 

  37. Lotz B, Kovacs AJ, Wittmann JC (1975) J Polym Sci Phys Ed 13:909

    Google Scholar 

  38. Krsova A (1977) Plasty Kauc 14:41 (CA 86:156316 U)

    Google Scholar 

  39. Kolesov SM (1980) IEEE Trans Electr Insul EI 15:382

    Google Scholar 

  40. Gohil RM, Vatansever A, Phillips PJ (unpublished data)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gohil, R.M. Etching and the morphology of branched and cross-linked polyethylene. Colloid & Polymer Sci 264, 951–964 (1986). https://doi.org/10.1007/BF01410860

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01410860

Key words

Navigation