Skip to main content
Log in

A Jacobi eigenreduction algorithm for definite matrix pairs

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We propose a Jacobi eigenreduction algorithm for symmetric definite matrix pairsA, J of small to medium-size real symmetric matrices withJ 2=I,J diagonal (neitherJ norA itself need be definite). Our Jacobi reduction works only on one matrix and usesJ-orthogonal elementary congruences which include both trigonometric and hyperbolic rotations and preserve the symmetry throughout the process. For the rotation parameters only the pivotal elements of the current matrix are needed which facilitates parallelization. We prove the global convergence of the method; the quadratic convergence was observed in all experiments. We apply our method in two situations: (i) eigenreducing a single real symmetric matrix and (ii) eigenreducing an overdamped quadratic matrix pencil. In both cases our method is preceded by a symmetric indefinite decomposition and performed in its “one-sided” variant on the thus obtained factors. Our method outdoes the standard methods like standard Jacobi orqr/ql in accuracy in spite of the use of hyperbolic transformations which are not orthogonal (a theoretical justification of this behaviour is made elsewhere). The accuracy advantage of our method can be particularly drastic if the eigenvalues are of different order. In addition, in working with quadratic pencils our method is shown to either converge or to detect non-overdampedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyris, J.H., Brønlund, O.E. (1975): The natural factor formulation of stiffness for the matrix deplacement method. Comput. Meth. Appl. Mech. Engrg.40, 97–119

    Google Scholar 

  2. Barlow, J., Demmel, J. (1990): Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numr. Anal.27, 762–791

    Google Scholar 

  3. Brent, R.P., Luk, F.T. (1985): The solution of singular-value and symmetric eigenvalue problems on multiprocessor arrays. SIAM J. Sci. Statist. Comput.6, 69–84

    Google Scholar 

  4. Brent, R.P., Luk, F.T., van Loan, C. (1985): Computation of the singular value decomposition using mesh-connected processors. J. VISI Computer Systems1, 242–270

    Google Scholar 

  5. Bunch, J.R., Parlett, B.N. (1971): Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal.8, 639–655

    Google Scholar 

  6. Chartres, B.A. (1962): Adaptation of the Jacobi Method for a Computer with Magnetic Tape Backing Store. Comput. J.5, 51–60

    Google Scholar 

  7. Demmel, J., Veselić, K. (1992): Jacobi's method is more accorate thanQR, Courant Institute preprint 1989. SIAM J. Matr. Anal. Appl. (to appear)

  8. Donner, K. (1990): Über ein Jacobi-Verfahren für definite hermitesche Matrix-Paare. Fernuniversität Hagen, Diplomarbeit

  9. Drmač, Z., Hari, V. (1993): On quadratic convergence bounds for the J-symmetric Jacobi method. Numer. Math. (to appear)

  10. Duffin, R.J. (1955): A minimax theory for overdamped networks. J. Rat. Mech. Anal.4, 221–233.

    Google Scholar 

  11. Durand, E. (1972): Solutions numériques des équations algébriques. Mason, Paris

    Google Scholar 

  12. Eberlein, P.J., Boothroyd, J. (1968): Solution to the eigenproblem by a norm reducing Jacobi type method. Numer. Math.11, 1–12 (also [41] p. 327)

    Google Scholar 

  13. Falk, S., Langemeyer, P. (1960): Das Jacobische Rotationsverfahren für reellsymmetrische Matrizenpaare I, II. Elektronische Datenverarbeitung, pp. 30–43

  14. Falk, S. (1984): Über halbimplizite und implizite Algorithmen zur endlichen und iterativen Transformationen von Matizenpaarens. ZAMM64, 437–439

    Google Scholar 

  15. Golub, G.H., van Loan, Ch.F. (1989): Matrix computations. Hopkins University Press, Baltimore

    Google Scholar 

  16. Gose, G. (1979): Das Jacobi-Verfahren fürAx =λBx. ZAMM59, 93–101

    Google Scholar 

  17. Hari, V. (1982): On the global convergence of the Eberlein method for real matrices. Numer. Math.39, 361–369

    Google Scholar 

  18. Hari, V. (1984): On cyclic Jacobi methods for the positive definite generalized eigenvalue problem. Fernuniversität Hagen, Dissertation

  19. Hari, V.: On the global convergence of cyclic Jacobi methods for the generalized eigenproblem. Department of Mathematics, University of Zagreb, preprint

  20. Hari, V. (1991): On pairs of almost diagonal matrices. Linear Algebra Appl.148, 193–223.

    Google Scholar 

  21. Hari, V., Veselić, K. (1987): On Jacobi methods for singular value decompositions. SIAM J. Sci. Stat. Comp.8, 741–754

    Google Scholar 

  22. Hestenes, M.R. (1958): Inversion of matrices by biorthogonalization and related results. J. STAM6, 51–90

    Google Scholar 

  23. Kaiser, H.F. (1972): The JK method: a procedure for finding the eigenvalues and eigenvectors of a real symmetric matrix. Compout. J.15, 271–273

    Google Scholar 

  24. Kato, T. (1966): Perturbation theory for linear operators. Springer, Berlin Heidelberg New York

    Google Scholar 

  25. Luk, F.T., Park, H. (1987): A proof of convergence for two parallel Jacobi SVD algorithms. Proc. SPIE 826. Advanced algorithms and signal processing. II, San Diego, CA

  26. Moler, C.B., Stewart, G.W. (1973): An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal.10, 241–256

    Google Scholar 

  27. Nash, J.C. (1974): A one-sided transformation method for the singular value decomposition and algebraic eigenvalue problem. Comput. J.18, 74–76

    Google Scholar 

  28. Rath, W. (1982): Fast Givens rotations for orthogonal similarity transformations. Numer. Math.40, 47–56

    Google Scholar 

  29. Sameh, A.H. (1971): On Jacobi and Jacobi-like algorithms for a parallel computer. Math. Comput.25, 579–590

    Google Scholar 

  30. Scott, D.S., Ward, R.C. (1982): Solving symmetric-definite quadratic λ-matrix problems without factorization. SIAM J. Sci. Stat. Comput.3, 58–110

    Google Scholar 

  31. Shroff, G., Schreiber, R. (1988): On the convergence of the cyclic Jacobi method for parallel block orderings. Rensselaer Polyt. Inst. Dept. Comput. Sci. Report No. 88-11

  32. Slapničar, I., Hari, V. (1991): On the quadratic convergence of the Falk-Langemeyer method. SIAM J. Math. Anal.12, 84–114

    Google Scholar 

  33. Slapničar, I. (1992): Accurate symmetric eigenreduction by a Jacobi method, Fernuniversität Hagen, Ph.D. Thesis

  34. Stewart, G.W. (1979): Perturbation bounds for the definite generalized eigenvalue problems. Linear Alg. Appl.23, 69–85

    Google Scholar 

  35. Veselić, K. (1976): Some convergent Jacobi-like procedures for diagonalizing J-symmetric matrices. Numer. Math.27, 67–75

    Google Scholar 

  36. Veselić, K. (1983): Global Jacobi method for a symmetric indefinite problemSx =λTx. Comput. Meth. Appl. Mech. Engrg.38, 273–290

    Google Scholar 

  37. Veselić, K., Hari, V. (1989): A note on a one sided Jacobi algorithm. Numer. Math.56, 627–633

    Google Scholar 

  38. Veselić, K., Slapničar, I. (1992): Floating-point perturbations of Hermitian matrices. Fernuniversität Hagen, preprint

  39. Wang, X., (1991): A few propositions on upper bounds for max0 ≦mM κ(A m )/κ(A o ). Fernuniversität Hagen, preprint

  40. Wilkinson, J.H. (1968): Almost diagonal matrices with multiple or close eigenvalues Linear. Algebra Appl.1, 1–12

    Google Scholar 

  41. Wilkinson, J.H., Reinsch, C. (1971): Handbook of Automatic Computation II Linear Algebra. Springer, Berlin Heidelberg New York

    Google Scholar 

  42. Zimmermann, K. (1965): On the convergence of a Jacobi process for ordinary and generalized eigenvalue problems. ETH Zürich Dissertation No. 4305

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselié, K. A Jacobi eigenreduction algorithm for definite matrix pairs. Numer. Math. 64, 241–269 (1993). https://doi.org/10.1007/BF01388689

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01388689

Mathematics Subject Classification (1991)

Navigation