Skip to main content
Log in

The proline biosynthesis in living organisms

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

In this article we review recent work on the physiology of proline and Δ1-pyrroline-5-carboxylate (P5C) in living organisms and consider recent progress in our understanding of the role of P5C synthetase in collagen metabolism and the regulation of urea cycle in vertebrates. Much of this recent progress has been made possible by advances in our knowledge of the enzymes and genes involved in proline biosynthesis in man. The availability of well characterized P5C synthetase deficiency in man has been an impetus for the cloning of the cDNA encoding for this enzyme from man and facilitated the establishment of the phenotype-genotype relationships in P5C synthetase deficiency in higher vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GK:

γ-glutamyl kinase

GPR:

γ-glutamyl phosphate reductase

P5CR:

Δ 1-pyrroline-5-carboxylate reductase

GSA:

glutamic-γ-semialdehyde

P5C:

Δ1-pyrroline-5-carboxylate

P1 :

Inorganic phosphate

AMP, ADP, ATP:

Adenosine 5′-mono-, di-, triphosphate

NAD+, NADH:

nicotinamide adenine dinucleotide, and its reduced form

NADP+, NADPH:

nicotinamide adenine dinucleotide phosphate, and its reduced form; DEAF: diethylaminoethyle

OAT:

ornithine amino transferase; CHO: Chinese hamster ovary

IGF-1:

insulin-like growth factor-1

P5CDH:

pyrroline 5carboxylate dehydrogenase

IMP:

inosine 5′-monophosphate

References

  • Adams E (1970) Metabolism of proline and of hydroxyproline. Int Rev Connect Tissue Res 5: 1–91

    PubMed  Google Scholar 

  • Adams E, Frank L (1980) Metabolism of proline and the hydroxyprolines. Annu Rev Biochem 49: 1005–1061

    PubMed  Google Scholar 

  • Adams E, Goldstone A (1960) Hydroxyproline metabolism. IV. Enzymatic synthesis ofγ-hydroxyglutamate from Δ1-pyrroline-3-hydroxy-5-carboxylate. J Biol Chem 235: 3504–3512

    PubMed  Google Scholar 

  • Aral B, Schlenzig JS, Liu G, Kamoun P (1996) Database cloning human A1-pyrroline-5carboxylate synthetase (P5CS) cDNA. C R Acad Sci 319: 171–178

    Google Scholar 

  • Aral B, Rabier D, Poggi F, Saudubray JM, Kamoun P (1997) A mutation of Δ1-pyrroline 5-carboxylate synthetase associated with hyperammonemia, hypocitrullinemia, hypoornithinemia and hypoprolinemia (submitted to publication)

  • Baich A (1969) Proline synthesis in Escherichia coli. A proline-inhibitable glutamic acid kinase. Biochim Biophys Acta 192: 462–467

    PubMed  Google Scholar 

  • Baich A (1971) The biosynthesis of proline in Escherichia coli. Phosphate-dependent glutamate y-semialdehyde dehydrogenase (NADP), the second enzyme in the pathway. Biochim Biophys Acta 244: 129–134

    PubMed  Google Scholar 

  • Baich A (1977) Alternative pathways for proline synthesis in mammalian cells. Somatic Cell Genet 3: 529–538

    PubMed  Google Scholar 

  • Ballantyne JS, Chamberlin ME (1994) Regulation of cellular amino acid levels. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, FL, pp 111–122

    Google Scholar 

  • Barrett DJ, Bateman JB, Sparkes RS, Mohandas T, Klisak I, Inana G (1987) Chromosomal localization of human ornithine aminotransferase gene sequences to 10g26. Invest Ophthalmol Vis Sci 28: 1037–1042

    PubMed  Google Scholar 

  • Berthold HK, Reeds PJ, Klein PD (1995) Isotopic evidence for the differential regulation of arginine and proline synthesis in man. Metabolism44: 466–473

    PubMed  Google Scholar 

  • Boggess SE, Stewart CR (1980) The relationship between water stress induced proline accumulation and inhibition of protein synthesis in tobacco leaves. Plant Sci Lett 17: 245–252

    Google Scholar 

  • Boggess SE, Aspinall D, Paleg LG (1976) Stress metabolism. IX. The significance of endproduct inhibition of proline biosynthesis and of compartmentation in relation to stress-induced proline accumulation. Aust J Plant Physiol 3: 513–525

    Google Scholar 

  • Brandriss MC (1979) Isolation and preliminary characterization of Saccharomyces cerevisiae proline auxotrophs. J Bacteriol 138: 816–822

    PubMed  Google Scholar 

  • Brandriss MC, Magasanik B (1980) Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae. J Bacteriol 143: 1403–1410

    PubMed  Google Scholar 

  • Brandriss MC, Magasanik B (1981) Subcellular compartmentation in control of converging pathways for proline and arginine. J Bacteriol 145: 1359–1364

    PubMed  Google Scholar 

  • Brandriss MC, Falvey DA (1992) Proline biosynthesis in Saccharomyces cerevisiae: analysis of the PR03 gene, which encodes Δ-1 pyrroline-5-carboxylate reductase. J Bacteriol 174: 3782–3788

    PubMed  Google Scholar 

  • Conn EE, Stumpf PK, Bruening G, Doi R (1987) The metabolism of ammonia and nitrogen-containing compounds. In: Outlines of biochemistry, 5th edn. John Wiley & Sons, New York, p 530

    Google Scholar 

  • Csonka LN (1981) Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet 182: 82–86

    PubMed  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53: 121–147

    PubMed  Google Scholar 

  • Csonka LN, Baich A (1983) Proline biosynthesis. In: Herrmann KM, Somerville RL (eds) Amino acids, biosynthesis and genetic regulation. Addison-Wesley, Reading, pp 3551

    Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45: 569–606

    PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1990) A soybean Δ1-pyrroline-5-carboxyl ate reductase gene was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Mol Gen Genet 221: 299–305

    PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215–223

    Google Scholar 

  • Delauney AJ, Hu C-AA, Kisher PBK, Verma DPS (1993) Cloning of ornithine daminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline synthesis. J Biol Chem 268: 18673–18678

    PubMed  Google Scholar 

  • Deutch AH, Rushlow KE, Smith CJ, Kretschmer PJ (1982) Escherichia coli (1-pyrroline5-carboxylate reductase: gene sequence, protein overproduction and purification. Nucleic Acids Res 10: 7701–7714

    PubMed  Google Scholar 

  • Deutch AH, Smith CJ, Rushlow KE (1984) Analysis of the Escherichia coli proBA locus by DNA and protein sequencing. Nucleic Acids Res 12: 6337–6355

    PubMed  Google Scholar 

  • Dorffling K, Dorffling H, Lesselich G (1993) In vitro-selection and regeneration of hydroxyproline-resistant lines of winter wheat with increased proline content and increased frost tolerance. J Plant Physiol 142: 222–225

    Google Scholar 

  • Dougherty KM, Brandriss MC, Valle D (1992) Cloning human pyrroline-5-carboxylate reductase cDNA by complementation in Saccharomyces cerevisiae. J Biol Chem 267: 871–875

    PubMed  Google Scholar 

  • Elthon TE, Stewart CR (1982) Proline oxidation in corn mitochondria. Plant Physiol 70: 567–572

    Google Scholar 

  • Fleming GA, Hagedorn CH, Granger AS, Phang JM (1984) Pyrroline-5-carboxylate in human plasma. Metabolism 33: 739–742

    PubMed  Google Scholar 

  • Fleming GA, Granger A, Rogers QR, Prosser M, Ford DB, Phang JM (1989) Fluctuations in plasma pyrroline-5-carboxylate concentrations during feeding and fasting. J Clin Endocrinol Metab 69: 448–452

    PubMed  Google Scholar 

  • Forte McRobbie CM, Pietruszko R (1986) Purification and characterization of human liver “high Km” alldehyde dehydrogenase and its identification as glutamic ysemialdehyde dehydrogenase. J Biol Chem 261: 2154–2163

    PubMed  Google Scholar 

  • Fukutoku Y, Yamada Y (1984) Sources of proline-nitrogen in water-stressed soybean (Glycine max). II. Fate of 15N-labelled protein. Physiol Plant 61: 622–628

    Google Scholar 

  • Gamper H, Moses V (1974) Enzyme organization in the proline biosynthetic pathway of Escherichia coli. Biochim Biophys Acta 354: 75–871

    PubMed  Google Scholar 

  • Garcia-Rios MG, LaRosa PC, Bressan RA, Csonka LN, Hanquier JM (1991) Cloning by complementation of theγ-glutamyl kinase gene from a tomato expression library. In: Hallick RB (ed) Abstracts of the Third International Congress of Plant Molecular Biology, Tucson, Arizona, Oct. 6–11, 1991. Abstract #1507.

  • Garcia-Rios MG, Csonka, LN, Bressan RA, LaRosa PC, Haliquier J (1994) Cloning of a DNA fragment encodingγ-glutamyl kinase andγ-glutamyl phosphate reductase from a tomato cDNA library. In: Cherry JH (ed) Cell biology: biochemical and cellular mechanisms of stress tolerance in plants, NATO ASI Series H. Springer, Berlin Heidellerg New York Tokyo

    Google Scholar 

  • Hamilton PT, Reeve JN (1985) Structure of genes and an insertion element in the methane producing archaebacterium. Mol Gen Genet 200: 47–59

    PubMed  Google Scholar 

  • Hanson AD, Hitz WD (1982) Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol 33: 163–203

    Google Scholar 

  • Hauser ER, Finkelstein JE, Valle D, Brusilow SW (1990) Allopurinol-induced orotidinuria. A test for mutations at the ornithine carbamoyltransferase. N Engl J Med 322: 1641–1645

    PubMed  Google Scholar 

  • Hayzer DJ, Leisinger T (1980) The gene-enzyme relationships of proline biosynthesis in Escherichia coli. J Gen Microbiol 118: 287–293

    PubMed  Google Scholar 

  • Hayzer DJ, Leisinger T (1981) Proline biosynthesis in Escherichia coli. Stoechiometry and end-product identification of the reaction catalysed by glutamate semialdehyde dehydrogenase. Biochem J 197: 269–274

    PubMed  Google Scholar 

  • Hayzer DJ, Leisinger T (1982) Proline biosynthesis in Escherichia coli. Purification and characterization of glutamate-semialdehyde dehydrogenase. Eur J Biochem 121: 561–565

    PubMed  Google Scholar 

  • Hayzer DJ, Moses V (1978a) Proline biosynthesis by cell-free extracts of Escherichia coli and potential errors arising from the use of a bioradiological assay procedure. Biochem J 173: 207–217

    PubMed  Google Scholar 

  • Hayzer DJ, Moses V (1978b) The enzymes of proline biosynthesis in Escherichia coli. Their molecular weights and the problem of enzyme aggregation. Biochem J 173: 219–228

    PubMed  Google Scholar 

  • Hensless JG, Jones ME (1982) Ornithine synthesis from glutamate in rat small intestinal mucosa. Arch Biochem Biophys 219: 186–197

    PubMed  Google Scholar 

  • Herzfeld A, Mezl VA, Knox WE (1977) Enzymes metabolizing Δ1-pyrroline-5-5carboxylate in rat tissues. Biochem J 166: 95–103

    PubMed  Google Scholar 

  • Heyser JW, De Bruin D, Kincard ML, Johnson RY, Rodriguez MM, Robinson NJ (1989a) Inhibition of NaCl-induced proline biosynthesis by exogenous proline in halophytic Distichlis spicata suspension cultures. J Exp Bot 40: 225–232

    Google Scholar 

  • Heyser JW, Chacon MJ, Warren RC (1989b) Characterization of L-[5-13C]-proline biosynthesis in halophytic and nonhalophytic suspension cultures by 13C NMR. J Plant Physiol 135: 459–466

    Google Scholar 

  • Hu C-AA, Delauney AJ, Verma DPS (1992) A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89: 9354–9358

    PubMed  Google Scholar 

  • Hu CA, Geraghty M, Lin W-W, Valle D (1996) Type II hyperprolinemia: cloning and expression in yeast of cDNAs encoding human Δ1l-pyrroline-5-carboxylate (P5C) dehydrogenase and delineation of mutations responsible for type II hyperprolinemia (HP II). In: Byers PH (ed) Abstracts of the 46th Annual Meeting of the American Society of Human Genetics, San Francisco, California, Oct. 29–Nov. 2, 1996. Abstract #1146

  • Huang AHC, Cavalieri AJ (1979) Proline oxidase and water-stress induced proline accumulation in spinach leaves. Plant Physiol 63: 531–535

    Google Scholar 

  • Inana G, Totsuka S, Redmond M, Dougherty T, Nagle J, Shiono T, Ohura T (1986) Molecular cloning of human ornithine aminotransferase mRNA. Proc Natl Acad Sci USA 83: 1203–1207

    PubMed  Google Scholar 

  • Isseroff H (1979) In: Simeon V, Vitale LJ (eds) Proceedings of the FEBS Special Meeting on Enzymes. Pergamon, Oxford, pp 303–314

    Google Scholar 

  • Jernigan HM Jr (1990) Metabolism of glutamane and glutamate in human lenses. Exp Eye Res 50: 597–601

    PubMed  Google Scholar 

  • Johnson AB, Strecker HJ (1962) The interconversion of glutamic acid and proline. IV. The oxidation of proline by rat liver mitochondria. J Biol Chem 237: 1876–1882

    PubMed  Google Scholar 

  • Ketchtum REB, Warren RC, Klima LJ, Lopez-Gutierrez F, Nabors MW (1991) The mechanism and regulation of proline accumulation in suspension cultures of the halophytic grass Distichlis spicata L. J Plant Physiol 137: 368–374

    Google Scholar 

  • Kowaloff EM, Granger AS, Phang JM (1976) Alterations in proline metabolic enzymes with mammalian development. Metabolism 25: 1087–1094

    PubMed  Google Scholar 

  • Kowaloff EM, Phang JM, Granger AS, Downing SJ (1977) Regulation of proline oxidase activity by lactate. Proc Natl Acad Sci USA 74: 5368–5371

    PubMed  Google Scholar 

  • Kowaloff EM, Phang JM, Granger AS, Downing SJ (1978) Glucocorticoid induction of proline oxidase in LLC-RK1 cells. J Cell Physiol 97: 153–159

    PubMed  Google Scholar 

  • Kramer JJ, Henslee JG, Wakabayashi Y, Jones ME (1985) Δ1-pyrroline-5-carboxylate synthase from rat intestinal mucosa. Methods Enzymol 113: 113–120

    PubMed  Google Scholar 

  • Krishna RV, Leisinger T (1979) Biosynthesis of proline in Pseudomonas aeruginosa. Partial purification and characterization ofγ-glutamyl kinase. Biochem J 181: 215–222

    PubMed  Google Scholar 

  • Krishna RV, Beilstein P, Leisinger T (1979) Biosynthesis of proline in Pseudomona aeruginosa. Properties ofγ-glutamyl phosphate reductase and Δ1-pyrroline-5-carboxylate reductase. Biochem J 181: 223–230

    PubMed  Google Scholar 

  • Krueger R, Jager H-J, Hintz M, Pahlich E (1986) Purification to homogeneity of pyrroline-5-carboxylate reductase of barley. Plant Physiol 80: 142–144

    Google Scholar 

  • LaRosa RC, Rhodes D, Rhodes JC, Bressati RA, Csonka LN (1991) Elevated accumulation of proline in NaCl-adapted tobacco cells is not due to altered Δ1-pyrroline-5carboxylate reductase. Plant Physiol 96: 245–250

    Google Scholar 

  • Lee EC, Walker RI, Guerry P (1985) Expression of Campylobacter genes for proline biosynthesis in Escherichia coli. Can J Microbiol 31: 1064–1067

    PubMed  Google Scholar 

  • Li W, Brandriss MC (1992) Proline biosynthesis in Saccharomyces cerevisiae: molecular analysis of the PRO1 gene, which encodesγ-glutamyl kinase. J Bacteriol 174: 4148–4156

    PubMed  Google Scholar 

  • Liu G, Maunoury C, Kamoun P, Aral B (1996) Assignment of the human gene encoding the Δ1-pyrroline-5-carboxylate synthetase (P5CS) to 10g24.3 by in situ hybridization. Genomics 37: 145–146

    PubMed  Google Scholar 

  • Lodato RF, Smith RJ, Valle D, Phang JM, Aoki TT (1981) Regulation of proline biosynthesis: the inhibition of pyrroline-5-carboxylate synthase activity by ornithine. Metabolism 30: 908–913

    PubMed  Google Scholar 

  • Lorans G, Phang JM (1981) Proline synthesis and redox regulation: differential functions of pyrroline-5-carboxylate. Biochem Biophys Res Commun 101: 1018–1025

    PubMed  Google Scholar 

  • Lorans G, Rosenfeld C, Petitou M Phan-Dinh-Tuy F, Mathe G (1978) Metabolism of proline in a human leukemic lymphoblastoid cell line. Cancer Res 38: 3950–3953

    PubMed  Google Scholar 

  • Lundgren D, Ogur M (1972) Amino acid inhibition of a Δ1-pyrroline-5-carboxylate dehydrogenase preparation from beef kidney mitochondria. Biochem Biophys Res Commun 49: 147–149

    PubMed  Google Scholar 

  • Lundgren DW, Ogur M (1973) Inhibition of yeast Δ1-pyrroline-5-carboxylate dehydrogenase by common amino acids and the regulation of proline catabolism. Biochim Biophys Acta 297: 246–257

    PubMed  Google Scholar 

  • Lyons RT, Pitot HC (1976) The regulation of ornithine aminotransferase synthesis by glucagon in the rat. Arch Biochem Biophys 174: 262–272

    PubMed  Google Scholar 

  • Mahan MJ, Csonka LN (1983) Genetic analysis of the proBA genes of Salmonella typhimurium: physical and genetic analyses of the cloned proB+A genes of Escherichia coli and of a mutant allele that confers proline overproduction and enhanced osmotolerance. J Bacteriol 156: 1249–1262

    PubMed  Google Scholar 

  • Matsuzawa T (1982a) Disease of the ornithine-proline pathway: A1-pyrroline-5carboxylate reductase. Metab Pediatr Syst Ophthalmol 6: 123–128

    PubMed  Google Scholar 

  • Matsuzawa T (1982b) Purification and characterization of pyrroline-5-carboxylate reductase from bovine retina. Biochim Biophys Acta 717: 215–219

    PubMed  Google Scholar 

  • Matsuzawa T, Ishiguro I (1980) Δ1-Pyrroline-5-carboxylate reductase from Baker's yeast. Purification, properties and its application in the assays of L-delta 1-pyrroine-5-carboxylate and L-ornithine in tissue. Biochim Biophys Acta 613: 318–323

    PubMed  Google Scholar 

  • Matsuzawa T, Obara Y (1987) Amino acid synthesis from ornithine: enzymes and quantitative comparison in brain slices and detached retinas from rats and chicks. Brain Res 413: 314–319

    PubMed  Google Scholar 

  • Matsuzawa T, Iwasaki K, Hiraiwa N, Inagaki E, Ishiguro I (1982a) Disease of ornithineproline pathway: a A1-pyrroline-5-carboxylate reductase deficiency in the retina of retinal degeneration mice. Adv Exp Med Biol 153: 361–370

    PubMed  Google Scholar 

  • Matsuzawa T, Iwasaki K, Hiraiwa N, Inagaki E, Ishiguro I (1982b) In: Lowenthal A, Mori A, Marescau B (eds) Urea cycle disease. Plenum Press, New York

    Google Scholar 

  • Mazelis M (1979) ATP-dependent hydrolysis of 5-oxoproline to glutamate in higher plants. In: Hewitt EJ, Cutting CV (eds) Nitrogen assimilation of plants. Academic Press, London, pp 407–417

    Google Scholar 

  • McGivan JD, Bradford NM, Beavis AD (1977) Factors influencing the activity of ornithine aminotransferase in isolated rat liver. Biochem J 162: 147–156

    PubMed  Google Scholar 

  • Meister A, Radhakrishnan AN, Buckley SD (1957) Enzymatic synthesis of L-pipecolic acid and L-proline. J Biol Chem 229: 789–800

    PubMed  Google Scholar 

  • Mestichelli LJJ, Gupta RN, Spenser ID (1979) The biosynthetic route from ornithine to proline. J Biol Chem 254: 640–647

    PubMed  Google Scholar 

  • Meyer J (1977) Proline transport in rat liver mitochondria. Arch Biochem Biophys 178: 387–395

    PubMed  Google Scholar 

  • Mezl VA, Knox WE (1977) Metabolism of arginine in lactating rat mammary gland. Biochem J 166: 105–113

    PubMed  Google Scholar 

  • Mixson AJ, Granger AN, Phang JM (1991) An assay for pyrroline-5-carboxylate based on its interaction with cysteine. Anal Letters 24: 625–641

    Google Scholar 

  • Miflin BJ, Lea PJ (1977) Amino acid metabolism. Annu Rev Plant Physiol 28: 299–329

    Google Scholar 

  • Mitchell GA, Looney JE, Brody LC, Steel G, Suchanek M, Engelhardt JF (1988) Human ornithine-δ-aminotransferase. cDNA cloning and analysis of the structural gene. J Biol Chem 263: 14288–14295

    PubMed  Google Scholar 

  • Morris CJ, Thompson JF, Johnson CM (1969) Metabolism of glutamic acid and Nacetylglutamic acid in leaf discs and cell-free extracts of higher plants. Plant Physiol 44:1023–1026

    Google Scholar 

  • Mueckler MM, Merrill MJ, Pitot HC (1983) Translational and pretranslational control of ornithine aminotransferase synthesis in rat liver. J Biol Chem 258: 6109–6114

    PubMed  Google Scholar 

  • Oaks A (1992) The function of roots in the synthesis of amino acids and amides. In: Singh BK, Flores HE, Shannon JC (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiologists, Rockville, MD, pp 111–120

    Google Scholar 

  • Oaks A, Mitchell DJ, Barnard RA, Johnson FJ (1970) The regulation of proline biosynthesis in maize roots. Can J Bot 48: 2249–2258

    Google Scholar 

  • Orser CS, Goodner BW, Johnston M, Gelvin SB, Csonka LN (1988) The Escherichia coli proB gene corrects the proline auxotrophy of Saccharomyces cerevisiae PRO1 mutants. Mol Gen Genet 212: 124–128

    PubMed  Google Scholar 

  • Phang JM (1985) The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr Top Cell Regul 25: 91–132

    PubMed  Google Scholar 

  • Phang JM, Downing SJ, Valle D (1973) A radioisotopic assay for Δ1-pyrroline-5carboxylate reductase. Anal Biochem 55: 266–271

    PubMed  Google Scholar 

  • Phang JM, Downing SJ, Yeh GC, Smith RJ, Williams JA (1979) Stimulation of the hexose-monophosphate pentose pathway by Δ1-pyrroline-5-carboxylic acid in human fibroblasts. Biochem Biophys Res Commun 87: 363–370

    PubMed  Google Scholar 

  • Phang JM, Downing SJ, Yeh GC, Smith RJ, Williams JA, Hagedorn CH (1982) Stimulation of the hexosemonophosphate-pentose pathway by pyrroline-5-carboxylate in cultured cells. J Cell Physiol 110: 255–261

    PubMed  Google Scholar 

  • Phang JM, Yeh GC, Scriver CR (1995) Disorders of proline and hydroxyproline metabolism. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw Hill, New York, pp 1125–1146

    Google Scholar 

  • Pritchard JB, O'Connor N, Oliver JM, Berlin RD (1975) Uptake and supply of purine compounds by the liver. Am J Physiol 229: 967–972

    PubMed  Google Scholar 

  • Rabier D, Nuttin C, Poggi F, Padovani JP, Abdo K, Bardet J, Parvy P, Kamoun P, Saudubray JM (1992) Familial joint hyperlaxicity, skin hyperelasticity, cataract and mental retardation with hyperammonemia and low citrulline, ornithine and proline. A new disorder of collagen metabolism? In: SSIEM (ed) Abstracts of the 30th Annual Symposium of the The Society for the Study of Inborn Errors of Metabolism (SSIEM), Leuven, September 8th–11th, 1992. Abstract #P61

  • Ramesh V, Shaffer MM, Allaire JM, Shih VE, Gusella JF (1986) Investigation of gyrate atrophy using a cDNA clone for human ornithine aminotransferase. DNA 5: 493–501

    PubMed  Google Scholar 

  • Ramesh V, Eddy R, Bruns GA, Shih VE, Shows TB, Gusella JF (1987) Localization of the ornithine aminotransferase gene and related sequences on two human chromosomes. Hum Genet 76: 121–126

    PubMed  Google Scholar 

  • Rayapati PJ, Stewart CR (1991) Solubilization of a proline dehydrogenase from maize (Zea mays L.) mitochondria. Plant Physiol 95: 787–791

    Google Scholar 

  • Riby JE, Hurwitz RE, Kretchmer N (1990) Development of ornithine metabolism in the mouse intestine. Pediatr Res 28: 261–265

    PubMed  Google Scholar 

  • Rhodes D, Handa S (1989) Amino acid metabolism in relation to osmotic adjustment in plant cells. In: Cherry JH (ed) Environmental stress in plants: biochemical and physiological mechanisms, NATO ASI Series, vol G19. Springer, Berlin Heidelberg New York Tokyo, pp 41–62

    Google Scholar 

  • Rhodes D, Handa S, Dressait RA (1986) Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol 82: 890–903

    Google Scholar 

  • Rogers OR, Phang JM (1985) Deficiency of pyrroline-5-carboxylate synthase in the intestinal mucosa of the cat. J Nutr 115: 146–150

    PubMed  Google Scholar 

  • Ross G, Dunn D, Jones ME (1978) Ornithine synthesis from glutamate in rat intestinal mucosa homogenates: evidence for the reduction of glutamate to gamma-glutamyl semialdehyde. Biochem Biophys Res Commun 85: 140–147

    PubMed  Google Scholar 

  • Rossi JJ, Vender J, Berg CM, Coleman WH (1977) Partial purification and some properties of Δ1-pyrroline-5-carboxylate reductase from Escherichia coli. J Bacteriol 129: 108–114

    PubMed  Google Scholar 

  • Rushlow KE, Deutch AH, Smith CJ (1984) Identification of a mutation that relievesγ-glutamyl kinase from allosteric feedback inhibition by proline. Gene 39: 109–112

    Google Scholar 

  • Savioz A, Jeenes DJ, Kocher HP, Haas D (1990) Comparison of proC and other housekeeping genes of Pseudomonas aeruginosa with their counterparts in Escherichia coli. Gene 86: 107–111

    PubMed  Google Scholar 

  • Seddon AP, Zhao KY, Meister A (1989) Activation of glutamate byγ-glutamate kinase: formation ofγ-cis-cycloglutamyl phosphate, an analog ofγ-glutamyl phosphate. J Biol Chem 264: 11326–11335

    PubMed  Google Scholar 

  • Semon BA, Phang JM (1991) Accumulation of pyrroline 5-carboxylic acid in conditioned medium of cultured fibroblast: stimulatory effects of serum, insulin, and IGF-1. In Vitro Cell Dev Biol 27A: 665–669

    PubMed  Google Scholar 

  • Shiono T, Kador PF, Kinoshita JJ (1986) Purification and characterization of rat lens pyrroline-5-carboxyl ate reductase. Biochem Biophys Acta 881: 72–78

    PubMed  Google Scholar 

  • Small C, Jones ME (1987) A specific radiochemical assay for pyrroline-5-carboxylate dehydrogenase. Anal Biochem 161: 380–386

    PubMed  Google Scholar 

  • Small WC, Jones ME (1990) Pyrroline 5-carboxylate dehydrogenase of the mitochondrial matrix of rat liver. J Biol Chem 265: 18668–18672

    PubMed  Google Scholar 

  • Smith CJ, Deutch AH, Rushlow KE (1984) Purification and characteristics of aγ-glutamyl kinase involved in Escherichia coli proline biosynthesis. J Bacteriol 157: 545–551

    PubMed  Google Scholar 

  • Smith LT (1985) Characterization of aγ-glutamyl kinase from Escherichia coli that confers proline overproduction and osmotic tolerance. J Bacteriol 164: 1088–1093

    PubMed  Google Scholar 

  • Smith ME, Greenberg DM (1957) Preparation and properties of partially purified glutamic semialdehyde reductase. J Biol Chem 226: 317–327

    PubMed  Google Scholar 

  • Smith RJ, Phang JM (1978) Proline metabolism in cartilage: the importance of proline biosynthesis. Metabolism 27: 685–694

    PubMed  Google Scholar 

  • Smith RJ, Phang JM (1979) The importance of ornithine as a precursor for proline in mammalian cells. J Cell Physiol 98: 475–481

    PubMed  Google Scholar 

  • Smith RJ, Downing SJ, Phang JM (1977) Enzymatic synthesis and purification of L-pyrroline-5-carboxylic acid. Anal Biochem 82: 170–176

    PubMed  Google Scholar 

  • Smith RJ, Reddi AH, Phang JM (1979) Changes in proline synthetic and degradative enzymes during matrix-induced cartilage and bone formation. Calcif Tissue Int 27: 275–279

    PubMed  Google Scholar 

  • Smith RJ, Downing SJ, Phang JM, Lodato RF, Aoki TT (1980) Pyrroline-5-carboxylate synthase activity in mammalian cells. Proc Natl Acad Sci USA 77: 5221–5225

    PubMed  Google Scholar 

  • Smith RJ, Lodato RF, Valle DL, Kazakis A (1981) Mutant cell lines resistant to azetidine carboxylic acid: quantitative and qualitative differences in pyrroline-5-carboxylate synthase activities. Biochem Biophys Res Commmun 99: 789–795

    PubMed  Google Scholar 

  • Splittstoesser WE, Fowden L (1973) Ornithine transaminase from Cucurbita maxima cotyledons. Phytochemistry 12: 785–790

    Google Scholar 

  • Stetten MR (1951) Mechanism of the conversion of ornithine into proline and glutamic acid in vivo. J Biol Chem 189: 499

    PubMed  Google Scholar 

  • Stewart CR (1981) Proline accumulation: biochemical aspects. In: Paleg LG, Aspinall D (eds) The physioloy and biochemistry of drought resistance in plants. Academic, Sydney, pp 243–259

    Google Scholar 

  • Stewart CR, Boggess SE, Aspinall D, Paleg G (1977) Inhibition of proline oxidation by water stress. Plant Physiol 59: 930–932

    Google Scholar 

  • Stewart CR, Larher E (1980) Accumulation of amino acids and related compounds in relation to environmental stress. In: Miflin BJ (ed) The biochemistry of plants, vol 5. Academic Press, New York, pp 609–635

    Google Scholar 

  • Stewart CR, Boggess SE (1978) Metabolism of [5-3H]proline by barley leaves and its use in measuring the effects of water stress on proline oxidation. Plant Physiol 61: 654–657

    Google Scholar 

  • Stewart PM, Batshaw M, Valle D, Walser M (1981) Effects of arginine-free meals on ureagenesis in cats. Am J Physiol 241: E310-E315

    PubMed  Google Scholar 

  • Strecker HJ (1960a) The interconversion of glutamic acid and proline II. The preparation and properties of A1-pyrroline-5-carboxylic acid. J Biol Chem 235: 2045–2050

    PubMed  Google Scholar 

  • Strecker HJ (1960b) The interconversion of glutamic acid and proline III. Δ1-pyrroline 5carboxylic acid dehydrogenase. J Biol Chem 235: 3218–3223

    Google Scholar 

  • Strom AR, Le Rudulier D, Jakowec MW, Bunnell RC, Valentine RC (1983) Osmoregulatory (Osm) genes and osmoprotective compounds. In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic engineering of plants. An agricultural perspective. Plenum Press, New York, pp 39–59

    Google Scholar 

  • Szoke A, Miao G-H, Hong Z, Verma DPS (1992) Subcellular localization of gDl-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol 99:1642–1649

    Google Scholar 

  • Thompson JE (1980) Arginine synthesis, proline synthesis, and related processes. In: Miflin BJ (ed) The biochemistry of plants, vol 5. Academic Press, New York, pp 375–402

    Google Scholar 

  • Tomenchok DM, Brandriss MC (1987) Gene-enzyme relationships in the proline biosynthetic pathway of Saccharomyces cerevisiae. J Bacteriol 169: 5364–5372

    PubMed  Google Scholar 

  • Treichel S (1986) The influence of NaCl on Δ1-pyrroline-5-carboxylate reductase in proline-accumulating cell suspension cultures of Mesembryanthemum nodiflorum and other halophytes. Plant Physiol 67: 173–181

    Google Scholar 

  • Valle D, Simell O (1995) The hyperornithinaemias. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw Hill, New York, pp 1147–1185

    Google Scholar 

  • Valle D, Downing SJ, Harris SC, Phang JM (1973) Proline biosynthesis: multiple defects in Chinese hamster ovary cells. Biochem Biophys Res Commun 53: 1130–1136

    PubMed  Google Scholar 

  • Valle D, Blaese RM, Phang JM (1975) Increased sensitivity of lymphocyte A1-pyrroline5-carboxylate reductase to inhibition by proline with transformation. Nature 253: 214–216

    PubMed  Google Scholar 

  • Valle D, Goodman SI, Applegarth DA, Shih VE, Phang JM (1976) Type II hyperprolinemia. Δ1-pyrroline-5-carboxylic acid dehydrogenase deficiency in cultured skin fibroblasts and circulating lymphocytes. J Clin Invest 58: 598–603

    PubMed  Google Scholar 

  • Valle D, Kupfer-Kaiser MI, Del-Valle LA (1977) Gyrate atrophy of the choroid and retina: deficiency of ornithine aminotransferase in transformed lymphocytes. Proc Natl Acad Sci USA 74: 5159–5161

    PubMed  Google Scholar 

  • Valle D, Walser M, Brusilow SW, Kupfer-Kaiser MI (1980) Gyrate atrophy of the choroid and retina: amino acid metabolism and correction of hyperornithinemia with an arginine-deficient diet. J Clin Invest 65: 371–378

    PubMed  Google Scholar 

  • Verbruggen N, Villarroel R, Van Montagu M (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103: 771–781

    PubMed  Google Scholar 

  • Verma DPS, Hu C-AA, Delauney AJ, Miao G-H, Hong Z (1992) Deciphering proline biosynthesis pathways in plants by direct, trans-, and co-complementation in bacteria. In: Singh BK, Flores HE, Shannon JC (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiologists, Rockville, MD, pp 128–138

    Google Scholar 

  • Volpe P, Sawamura R, Strecker HJ (1969) Control of ornithine A-transaminase in rat liver and kidney. J Biol Chem 244: 719–726

    PubMed  Google Scholar 

  • Wakabayashi Y, Jones ME (1983) Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa. J Biol Chem 258: 3865–3872

    PubMed  Google Scholar 

  • Wakabayashi Y, Henslee JG, Jones ME (1983) Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa. Subcellular localization and temperature stability. J Biol Chem 258: 3873–3882

    PubMed  Google Scholar 

  • Wakabayashi Y, Yamada R, Iwashima A (1985) Temperature- and time-dependent inactivation of pyrroline-5-carboxylate synthase: suggestive evidence for an allosteric regulation of the enzyme. Arch Biochem Biophys 238: 469–475

    PubMed  Google Scholar 

  • Wakabayashi Y, Yamada E, Hasegawa, Yamada R (1991) Enzymological evidence for the indispensability of small ntestine in the synthesis of arginine from glutamate. Arch Biochem Biophys 291: 1–8

    PubMed  Google Scholar 

  • Wang T, Lawler AM, Steel G, Sipila I, Milam AH, Valle D (1995) Mice lacking ornithineb-amino-transferase have paradoxical neonatal hypoornithinemia and retinal degeneration. Nature Genet 11: 185–190

    PubMed  Google Scholar 

  • Williamson CL, Slocum RD (1992) Molecular cloning and evidence for osmoregulation of the Al-pyrroline-5-carboxylate (proC) gene in pea (Pisum sativum L.). Plant Physiol 100:1464–1470

    PubMed  Google Scholar 

  • Windmueller HG, Spaeth AE (1975) Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine. Arch Biochem Biophys 171: 662–672

    PubMed  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299: 115–121

    PubMed  Google Scholar 

  • Wu G, Flynn NE, Yan W, Barstow DG Jr (1995a) Glutamine metabolism in chick enterocytes: absence of pyrroline-5-carboxylate synthase and citrulline synthesis. Biochem J 306: 717–721

    PubMed  Google Scholar 

  • Wu G, Knabe DA, Yan W, Flynn NE (1995b) Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol 268: R334-R342

    PubMed  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, FL, pp 81–109

    Google Scholar 

  • Yamada E, Wakabayashi Y (1991) Development of pyrroline-5-carboxylate synthase and N-acetylglutamate synthase and their changes in lactation and aging. Arch Biochem Biophys 291: 15–23

    PubMed  Google Scholar 

  • Yeh GC, Phang JM (1980) The function of pyrroline-5-carboxylate reductase in human erythrocytes. Biochem Biophys Res Commun 94: 450–457

    PubMed  Google Scholar 

  • Yeh GC, Phang JM (1981) The stimulation of purine nucleotide production by pyrroline5-carboxylic acid in human erythrocytes. Biochem Biophys Res Commun 103: 118–124

    PubMed  Google Scholar 

  • Yeh GC, Phang JM (1983) Pyrroline-5-carboxylate stimulates the conversion of purine antimetabolites to their nucleotide forms by a redox-dependent mechanism. J Biol Chem 258: 9774–9779

    PubMed  Google Scholar 

  • Yeh GC, Harris SC, Phang JM (1981) Pyrroline-5-carboxylate reductase in human erythrocytes. J Clin Invest 67: 1042–1046

    PubMed  Google Scholar 

  • Yeh GC, Roth EF Jr, Phang JM, Harris SC, Nagel RL, Rinaldi A (1984) The effect of pyrroline-5-carboxylic acid on nucleotide metabolism in erythrocytes from normal and glucose-6-phosphate dehydrogenase-deficient subjects. J Biol Chem 259: 5454–5458

    PubMed  Google Scholar 

  • Yip MC, Knox WE (1972) Function of arginase in lactating mammary gland. Biochem J 127:893–899

    PubMed  Google Scholar 

  • Zhang CS, Lu Q, Verma DP (1995) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J Biol Chem 270: 20491–20496

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aral, B., Kamoun, P. The proline biosynthesis in living organisms. Amino Acids 13, 189–217 (1997). https://doi.org/10.1007/BF01372588

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01372588

Keywords

Navigation