Skip to main content
Log in

Peristaltic transport of a power-law fluid: Application to the ductus efferentes of the reproductive tract

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The problem of peristaltic transport of a non-Newtonian (power-law) fluid in uniform and non-uniform two-dimensional channels has been investigated under zero Reynolds number with long wavelength approximation. A comparison of the results with those for a Newtonian fluid model shows that the magnitude of pressure rise, under a given set of conditions, is smaller in the case of the non-Newtonian fluid (power-law indexn < 1) at zero flow rate. Further, the pressure rise is smaller asn decreases from 1 at zero flow rate, is independent ofn at a certain value of flow rate and becomes greater if flow rate increases further. Also, at a given flow rate, an increase in wavelength leads to a decrease in pressure rise and increase in the influence of non-Newtonian behaviour. Pressure rise in the case of non-uniform geometry, is found to be much smaller than the corresponding value in the case of uniform geometry. Finally, the analysis is applied and compared with observed flow rates in the ductus efferentes of the male reproductive tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Latham TW (1966) Fluid motion in a Peristaltic Pump, M.S. Thesis, Massachusetts Institute of Technology, Cambridge, Mass

    Google Scholar 

  2. Jaffrin MY, Shapiro AH (1971) Ann Rev Fluid Dynamics 3:13–26

    Google Scholar 

  3. Rath HJ (1980) Peristaltische Strömungen. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  4. Srivastava LM, Srivastava VP (1984) J Biomech 17:821–830

    Google Scholar 

  5. Raju KK, Devanathan R (1972) Rheol Acta 11:170–178

    Google Scholar 

  6. Raju KK, Devanathan R (1974) Rheol Acta 13:944–948

    Google Scholar 

  7. Becker E (1980) Simple non-Newtonian Flows. In: Yih CS (ed) Advances in Applied Mechanics. Academic Press, New York, London, p 177–226

    Google Scholar 

  8. Böhme G, Friedrich R (1983) J Fluid Mech 128:109–122

    Google Scholar 

  9. Srivastava LM, Srivastava VP (1985) Ann Biomed Engineering 13:137–153

    Google Scholar 

  10. Srivastava LM (1986) Rheol Acta 25:638–641

    Google Scholar 

  11. Charm SE, Kurland GS (1965) Nature 206:617–629

    Google Scholar 

  12. Charm SE, Kurland GS (1974) Blood Flow and Microcirculation, New York, John Wiley

    Google Scholar 

  13. Lew HS, Fung YC, Löwenstein CB (1971) J Biomech 4:297–315

    Google Scholar 

  14. Wiedman MP (1963) Circulation Res. 12:375–381

    Google Scholar 

  15. Wiederhielm CA (1967) Analysis of Small Vessel Function, in: Reeve EB, Guyton AC (eds) Physical Bases of Circulatory Transport: Regulation and Exchange. Philadelphia, Saunders, WB Co., p 313

    Google Scholar 

  16. Lee JS, Fung YC (1971) Microcirc Res 3:272–279

    Google Scholar 

  17. Guha SK, Kaur H, Ahmed AH (1975) Med Biol Engineering 13:518–522

    Google Scholar 

  18. Gupta BB, Seshadri V (1976) J Biomech 9:105–109

    Google Scholar 

  19. Srivastava LM, Srivastava VP (1982) J Biomech 15:257–265

    Google Scholar 

  20. Srivastava LM, Srivastava VP, Sinha SN (1983) Biorheol 20:153–166

    Google Scholar 

  21. Shapiro AH, Jaffrin MY, Weinberg SL (1969) J Fluid Mech 37:799–825

    Google Scholar 

  22. Lardner TJ, Shack WJ (1971) Bull Math Biol 34:325–335

    Google Scholar 

  23. Srivastava LM, Srivastava VP, Sinha SN (1983) Biorheol 20:167–178

    Google Scholar 

  24. Weinberg SL, Eckstein EC, Shapiro AH (1971) J Fluid Mech 49:461–479

    Google Scholar 

  25. Tuck RR, Setchel BP, Waites GMH, Young JA (1970) Pflügers Arch 318:225–243

    Google Scholar 

  26. Waites GMH, Setchell, PP (1969) Some Physiological Aspects of the Function of the Testis. In: Mckerns KW (ed) The Gonade, New York, Appleton

    Google Scholar 

  27. Setchell BP (1970) The Testis 1

  28. Liron, N (1978) J Fluid Mech 86:705–726

    Google Scholar 

  29. Srivastava LM, Srivastava, VP, Sinha SN (1983) Biorheol 20:179–186

    Google Scholar 

  30. Greep RD (1966) Histology, McGraw Hill. New York, Blasiston Devision

    Google Scholar 

  31. Winet H, Blake JR (1980) Biorheol 17:135–150

    Google Scholar 

  32. Blake JR, Winet H (1980) Biorheol 17:125–134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, L.M., Srivastava, V.P. Peristaltic transport of a power-law fluid: Application to the ductus efferentes of the reproductive tract. Rheol Acta 27, 428–433 (1988). https://doi.org/10.1007/BF01332164

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01332164

Key words

Navigation