Skip to main content
Log in

Evolution of enterovirus 70 in nature: All isolates were recently derived from a common ancestor

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

The data of large RNase T1-resistant oligonucleotide mapping of enterovirus 70 (EV70) previously reported (Takeda et al., Virology 134, 375–388, 1984) were subjected to further genetical analysis to estimate the evolutionary rate of genome RNA of EV70 and to clarify the phylogenetic relationship among isolates. A proportion of common spots between strains decreased as the year elapsed and eventually, only seven spots were common to all the 16 isolates tested, indicating that the substitution is scattered throughout the genome. On the other hand, some specific sets of spots were conserved among geographically or epidemiologically related strains. Base sequence variation of the isolates was deduced according toAaronson et al. (Nucleic Acids Res. 10, 237–246, 1982) from pariwise comparison of the common spots and used as a genetic distance between them. The base substitution rate of virus genome was estimated by regression analysis of the genetic distance of the isolates against the sampling time. A fairly constant and rapid rate was obtained; it was 1.83 × 10−3/base/year. Based on the substitution rate, genetic distance and sampling time of the strains, the phylogenetic tree of EV70 was constructed using Unweighted Pair Group Method Using Arithmetic Averages (UPGMA) (Nei, Molecular Population Genetics and Evolution, North Holland, Amsterdam, 1975). The tree supports the previous hypothesis that evolution of EV70 started from a single common ancestor. The time of its emergence was estimated to be 1967±15 months. The virus branched into many strains early during the first pandemic and has evolved in a divergent fashion, yielding genetically polymorphic viruses in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaronson, R. P., Young, J. F., Palese, P.: Oligonucleotide mapping: Evaluation of its sensitivity by computer-simulation. Nucleic Acids Res.10, 237–246 (1982).

    Google Scholar 

  2. Chatterjee, S., Quarcoopome, C. O., Apenteng, A.: Unusual type of epidemic conjunctivitis in Ghana. Br. J. Ophthalmol.54, 628–630 (1970).

    Google Scholar 

  3. Chatterjee, S., Quarcoopome, C. O., Apenteng, A.: An epidemic of acute conjunctivitis in Ghana. Ghana Med. J.9, 9–11 (1970).

    Google Scholar 

  4. Gojobori, T., Yokoyama, S.: Rates of nucleotide substitution for cellular and viral oncogenes. Genetics107, 39 (1984).

    Google Scholar 

  5. Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., Van de Pol, S.: Rapid evolution of RNA genomes. Science215, 1577–1585 (1982).

    Google Scholar 

  6. Kew, O. M., Nottay, B. K., Hatch, M. H., Hierholzer, J. C., Obijeski, J. F.: Oligonucleotide fingerprint analysis of enterovirus 70 isolates from the 1980 to 1981 pandemic of acute hemorrhagic conjunctivitis: Evidence for a close genetic relationship among Asian and American Strains. Infect. Immun.41, 631–635 (1983).

    Google Scholar 

  7. Kono, R., Sasagawa, K., Ishii, K., Sugiura, S., Ochi, M., Matsumiya, H., Uchida, Y., Kameyama, K., Kaneko, M., Sakurai, N.: Pandemic of new type of conjunctivitis. Lanceti, 1191–1194 (1972).

    Google Scholar 

  8. Kono, R.: Apollo 11 disease or acute hemorrhagic conjunctivitis: A pandemic of a new enterovirus infection of the eyes. Am. J. Epidemiol.101, 383–390 (1975).

    Google Scholar 

  9. Kono, R., Miyamura, K., Yamazaki, S., Sasagawa, A., Kurahashi, H., Tajiri, E., Takeda, N., Rabin, Y., Renandet, J., Ishii, K., Nakazono, N., Sawada, H., Uchida, Y., Minami, K.: Seroepidemiologic studies of acute hemorrhagic conjunctivitis virus (enterovirus type 70) in West Africa. II. Studies with human sera collected in West African countries other than Ghana. Am. J. Epidemiol.114, 274–283 (1981).

    Google Scholar 

  10. Kono, R., Sasagawa, A., Yamazaki, S., Nakazono, N., Minami, K., Otatsume, S., Robin, Y., Renaudet, J., Connet, M., Afoakwa, S. N., Mingle, J. A. A., Obinim, J. K., Huros, A.: Seroepidemiologic studies of acute hemorrhagic conjunctivities virus (enterovirus type 70) in West Africa. III. Studies with animal sera from Ghana and Senegal. Am. J. Epidemiol.114, 362–368 (1981).

    Google Scholar 

  11. Kono, R., Miyamura, K., Ogino, T., Wadia, N. H., Wadia, P. N., Katrak, S. M., Misra, V. P.: Neurovirulence of enterovirus 70. Lanceti, 373–374 (1982).

    Google Scholar 

  12. Kono, R.: Acute hemorrhagic conjunctivitis (letter to editor). Am. J. Epidemiol.121, 775–776 (1985).

    Google Scholar 

  13. Krystal, M., Buonagurio, D., Young, J. F., Palese, P.: Sequential mutations in the NS genes of influenza virus field strains. J. Virol.45, 547–554 (1983).

    Google Scholar 

  14. Martinez, C., Rio, L., Portela, A., Domingo, E., Ortin, J.: Evolution of the influenza virus neuraminidase gene during drift of the N2 subtype. Virology130, 539–545 (1983).

    Google Scholar 

  15. Mirkovic, R. R., Kono, R., Yin-Murphy, M., Sohier, R., Schmidt, N. J., Melnick, J. L.: Enterovirus type 70: The etiologic agent of pandemic acute haemorrhagic conjunctivitis. Bull WHO49, 341–346 (1973).

    Google Scholar 

  16. Miyamura, K., Takeda, N., Yamazaki, S.: Characterization of a temperature-sensitive defect of enterovirus 70: Effect of elevated temperature onin vitro transcription. J. Virol.51, 192–198 (1984).

    Google Scholar 

  17. Nakajima, K., Desselberger, U., Palese, P.: Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature274, 334–339 (1978).

    Google Scholar 

  18. Nei, M.: Molecular population genetics and evolution, 197–202. Amsterdam: North-Holland 1975.

    Google Scholar 

  19. Nei, M.: Genetic polymorphism and the role of mutation in evolution. In:Nei, M., Koehn, R. K. (eds.), Evolution of Genes and Proteins, 115–190. Massachusetts: Sinauer Associates 1983.

    Google Scholar 

  20. Nei, M., Tajima, F., Tateno, Y.: Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol.19, 153–170 (1983).

    Google Scholar 

  21. Takeda, N., Miyamura, K., Ogino, T., Natori, K., Yamazaki, S., Sakurai, N., Nakazono, N., Ishii, K., Kono, R.: Evolution of enterovirus type 70: Oligonucleotide mapping analysis of RNA genome. Virology134, 375–388 (1984).

    Google Scholar 

  22. Tanimura, M., Miyamura, K., Takeda, N.: Construction of a phylogenetic tree of enterovirus 70. Jpn. J. Genet.60, 142–147 (1985).

    Google Scholar 

  23. Utagawa, E. T., Miyamura, K., Mukoyama, A., Kono, R.: Neuraminidase-sensitive erythrocyte receptor for enterovirus type 70. J. gen. Virol.63, 141–148 (1982).

    Google Scholar 

  24. Yin-Murphy, M. M.: Acute hemorrhagic conjunctivitis. Prog. med. Virol. Basel29, 23–44 (1984).

    Google Scholar 

  25. Yoshii, T., Natori, K., Kono, R.: Replication of enterovirus 70 in non-primate cell cultures. J. gen. Virol.36, 377–384 (1977).

    Google Scholar 

  26. Young, J. F., Desselberger, U., Palese, P.: Evolution of human influenza A viruses in nature: Sequential mutation in the genome of new H1N1 isolates. Cell18, 73–83 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamura, K., Tanimura, M., Takeda, N. et al. Evolution of enterovirus 70 in nature: All isolates were recently derived from a common ancestor. Archives of Virology 89, 1–14 (1986). https://doi.org/10.1007/BF01309875

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309875

Keywords

Navigation