Skip to main content
Log in

Algorithms for the solution of stochastic dynamic minimax problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present algorithms for the solution of the dynamic minimax problem in stochastic programs. This dynamic minimax approach is suggested for the analysis of multi-stage stochastic decision problems when there is only partial knowledge on the joint probability distribution of the random data. The algorithms proposed in this paper are based on projected sub-gradient and bundle methods.

Résumé

Dans cet article, nous proposons des algorithmes pour la solution du problème du minimax dynamique stochastique. Ce problème se présente par exemple lorsque, dans un problème de décision dynamique stochastique, l'information disponible au sujet des distributions de probabilité des paramètres est incomplète. Les algorithmes proposés sont fondés sur la méthode de sous-gradient projeté et la méthode des faisceaux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Birge and R.J.-B. Wets, “Designing Approximation for Stochastic Optimization Problems, in Particular for Stochastic Programs with Recourse,” Mathematical Programming Study, Vol. 27, pp. 54–102, 1986.

    Google Scholar 

  2. J.R. Birge and R.J.-B. Wets, “Computing Bounds for Stochastic Programming Problems by Means of a Generalized Moment Problem,” Mathematics of Operation Research, Vol. 12, pp. 149–162, 1987.

    Google Scholar 

  3. A. Brøndstedt and R.T. Rockafellar, “On the subdifferentiability of convex functions,” Proceedings of the American Mathematical Society, Vol. 16, pp. 605–611, 1965.

    Google Scholar 

  4. M. Breton and S. El Hachem, “Decomposition Algorithms for Stochastic Dynamic Programs,” working paper, Les Cahiers du GERAD, G-91-15, 1991.

  5. M. Breton and S. El Hachem, “A Scenario Aggregation Algorithm for the Solution of Stochastic Dynamic Minimax Programs,” working paper, Les Cahiers du GERAD, G-92-22, 1992. To appear in Stochastics.

  6. M.A.H. Dempster, “On Stochastic Programming II: Dynamic Problems Under Risk,” Stochastics, Vol. 25, pp. 15–42, 1988.

    Google Scholar 

  7. J. Dupacova, Minimax Stochastic Programs with Nonconvex Separable Penalty functions, in Progress in Operations Research, ed. by A. Prékopa, North Holland: Amsterdam, pp. 303–316, 1976.

    Google Scholar 

  8. J. Dupacova, “Minimax Approach to Stochastic Linear Programming and the Moment Problem,” Zeitschrifg fur Angewandte Mathematik und Mechanik, Vol. 58, pp. 466–467, 1978.

    Google Scholar 

  9. Y. Ermoliev, “Methods for Solving Non Linear Extremal Problems,” Cybernetics, Vol. 2, pp. 1–17, 1966.

    Google Scholar 

  10. Y. Ermoliev, “Stochastic Quasi-Gradient Methods,” in Numerical Techniques for Stochastic Optimization, ed. by Y. Ermoliev and R.J.-B. Wets, Springer-Verlag, pp. 141–186, 1988.

  11. Y. Ermoliev, A. Gaivoronsky, and C. Nedeva, “Stochastic Optimization Problems with Partially Known Distribution Functions,” SIAM Journal on Control and Optimization, Vol. 23, pp. 697–716, 1985.

    Google Scholar 

  12. K. Frauendorfer, “Solving SLP Recourse Problems with Arbitrary Multivariate Distributions—The Dependent Case,” Mathematics of Operations Research, Vol. 13, pp. 377–384, 1988.

    Google Scholar 

  13. K. Frauendorfer and P. Kall, “A Solution Method for SLP Recourse Problems with Arbitrary Multivariate Distributions—The Independent Case,” Problems in Control and Information Theory, Vol. 17, pp. 117–205, 1988.

    Google Scholar 

  14. A.A. Gaivoronsky, “A Numerical Method for Solving Stochastic Programming Problems with Moment Constraints on a Distribution Function,” Annals of Operations Research, Vol. 31, pp. 347–369, 1991.

    Google Scholar 

  15. H. Gassman and W.T. Ziemba, “A Right Upper Bound for the Expectation of a Convex Function of a Multivariate Random Variable,” Mathematical Programming Study, Vol. 27, pp. 39–53, 1986.

    Google Scholar 

  16. D. Haugland and S.W. Wallace, “Solving Many Linear Programs That Differ Only In The Right Hand Side,” European Journal Of Operational Research, Vol. 37, pp. 318–324, 1988.

    Google Scholar 

  17. M. Held, P. Wolfe, and H.P. Crowder, “Validation of Sub-gradient Optimization,” Mathematical Programming, Vol. 6, pp. 62–88, 1974.

    Google Scholar 

  18. J.-B. Hiriart-Urruty, “Lipschitz r-continuity of the Approximate Subdifferential of a Convex Function,” Mathematica Scandinavica, Vol. 47, pp. 123–134, 1980.

    Google Scholar 

  19. A. Karr, “Extreme Points of Certain Sets of Probability Measures, with Applications,” Mathematics of Operations Research, Vol. 8, pp. 670–682, 1983.

    Google Scholar 

  20. P. Kall, “An Upper Bound for SLP Using First and Total Second Moments,” Annals of Operations Research, Vol. 30, pp. 267–276, 1991.

    Google Scholar 

  21. J.H.B. Kempermann, “The General Moment Problem: A Geometric Approach,” Annals of Mathematical Statistics, Vol. 39, pp. 93–122, 1968.

    Google Scholar 

  22. S. Kim, H. Ahn, and S.-C. Cho, “Variable Target Value Subgradient Method,” Mathematical Programming, Vol. 49, pp. 359–369, 1991.

    Google Scholar 

  23. K.C. Kiwiel, “Methods of Descent for Nondifferentiable Optimization,” Lecture Notes in Mathematics, Vol. 1133, Springer-Verlag: Berlin, 1985.

    Google Scholar 

  24. C. Lemaréchal, “Nondifferentiable Optimization,” in Handbook in OR and MS, Vol. 9, ed. by G.L. Nemhauser et al., North-Holland, pp. 529–572, 1989.

  25. R. Mifflin, “A Stable Method for Solving Certain Constrained Least Squares Problems,” Mathematical Programming, Vol. 16, pp. 141–158, 1978.

    Google Scholar 

  26. M. Minoux, Programmation mathématique, théorie et algorithmes, Dunod: Paris, 1983.

    Google Scholar 

  27. A. Prekopa, “The Discrete Moment Problem and Linear Programming,” Discrete Applied Mathematics, Vol. 27, pp. 235–254, 1990.

    Google Scholar 

  28. Table S.M. Robinson, Bundle-Based Decomposition: Conditions for Convergence, in Analyse non linéaire, ed. by J. Attouch, J.-P. Aubin, F. Clarke, and I. Ekeland, Bordas: Paris, pp. 435–447, 1989.

    Google Scholar 

  29. R.T. Rockafellar, Convex Analysis, Princeton University Press: Princeton, 1970.

    Google Scholar 

  30. R.T. Rockafellar and R.J.-B. Wets, “Scenarios and Policy Aggregation in Optimization Under Uncertainty,” Mathematics of Operations Research, Vol. 16, pp. 1–29, 1991.

    Google Scholar 

  31. A. Ruszczynski, “A Linearization Method for Nonsmooth Stochastic Programming Problems,” Mathematics of Operations Research, Vol. 12, pp. 32–49, 1987.

    Google Scholar 

  32. H. Schramm and J. Zowe, “A version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results,” SIAM Journal on Optimization, Vol. 2, pp. 121–152, 1992.

    Google Scholar 

  33. J.J. Strodiot, V.H. Nguyen, and N. Heukemes, “ε-Optimal Solutions in Nondifferentiable Convex Programming and Some Related Questions,” Mathematical Programming, Vol. 25, pp. 307–328, 1983.

    Google Scholar 

  34. J.E. Spingarn, “Applications of the Method of Partial Inverses to Convex Programming,” Math. Prog., Vol. 32, pp. 199–223, 1985.

    Google Scholar 

  35. R.J.-B. Wets, “Large Scale Linear Programming Techniques,” in Numerical Techniques for Stochastic Optimization, ed. by U. Ermoliev and R.J.-B. Wets, Springer-Verlag, pp. 65–93, 1988.

  36. J. Zackova, “On Minimax Solutions of Stochastic Linear Programming Problems,” Casopis pro Pestovani Mathematiky, Vol. 91, pp. 423–430, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breton, M., El Hachem, S. Algorithms for the solution of stochastic dynamic minimax problems. Comput Optim Applic 4, 317–345 (1995). https://doi.org/10.1007/BF01300861

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01300861

Keywords

Navigation