Skip to main content
Log in

Actin and pollen tube growth

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Actin microfilaments (MFs) are essential for the growth of the pollen tube. Although it is well known that MFs, together with myosin, deliver the vesicles required for cell elongation, it is becoming evident that the polymerization of new actin MFs, in a process that is independent of actomyosin-dependent vesicle translocation, is also necessary for cell elongation. Herein we review the recent literature that focuses on this subject, including brief discussions of the actin-binding proteins in pollen, and their possible role in regulating actin MF activity. We promote the view that polymerization of new actin MFs polarizes the cytoplasm at the apex of the tube. This process is regulated in part by the apical calcium gradient and by different actin-binding proteins. For example, profilin binds actin monomers and gives the cell control over the initiation of polymerization. A more recently discovered actin-binding protein, villin, stimulates the formation of unipolar bundles of MFs. Villin may also respond to the apical calcium gradient, fragmenting MFs, and thus locally facilitating actin remodeling. While much remains to be discovered, it is nevertheless apparent that actin MFs play a fundamental role in controlling apical cell growth in pollen tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham VC, Krishnamurthi V, Taylor DL, Lanni F (1999) The actin-based nanomachine at the leading edge of migrating cells. Biophys J 77: 1721–1732

    PubMed  Google Scholar 

  • Adams RJ, Pollard TD (1989) Binding of myosin I to membrane lipids. Nature 340: 565–568

    PubMed  Google Scholar 

  • Agnew BJ, Minamide LS, Bamburg JR (1995) Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J Biol Chem 270: 17582–17587

    PubMed  Google Scholar 

  • Arpin M, Pringault E, Finidori J, Garcia A, Jeltsch JM, Vandekerckhove J, Louvard D (1988) Sequence of human villin: a large duplicated domain homologous with other actin-severing proteins and a unique small carboxy-terminal domain related to villin specificity. J Cell Biol 107: 1759–1766

    PubMed  Google Scholar 

  • Bamburg JR (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15: 185–230

    Google Scholar 

  • Barkalow K, Witke W, Kwiatkowski DJ, Hartwig JH (1996) Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein. J Cell Biol 134: 389–399

    PubMed  Google Scholar 

  • Bazari WL, Matsudaira P, Wallek M, Smeal T, Jakes R, Ahmed Y (1988) Villin sequence and peptide map identify six homologous domains. Proc Natl Acad Sci USA 85: 4986–4990

    PubMed  Google Scholar 

  • Bedinger PA, Hardeman KJ, Loukides CA (1994) Travelling in style: the cell biology of pollen. Trends Cell Biol 4: 132–138

    PubMed  Google Scholar 

  • Benkert R, Obermeyer G, Bentrup FW (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198: 1–8

    Google Scholar 

  • Blikstad I, Markey F, Carlsson L, Persson T, Lindberg U (1978) Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell 15: 935–943

    PubMed  Google Scholar 

  • Bryan J, Wang AC-L (1993) Caldesmon. In: Kreis T, Vale R (eds) Guidebook to the cytokeletal and motor proteins. Oxford University Press, New York, pp 29–31

    Google Scholar 

  • Burtnick LD, Koepf EK, Grimes J, Jones EY, Stuart DI, McLaughlin PJ, Robinson RC (1997) The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell 90: 661–670

    PubMed  Google Scholar 

  • Cai G, Moscatelli A, Cresti M (1997) Cytoskeletal organization and pollen tube growth. Trends Plant Sci 2: 86–91

    Google Scholar 

  • Cameron LA, Footer MJ, van Oudenaarden A, Theriot JA (1999) Motility of ActA protein-coated microspheres driven by actin polymerization. Proc Natl Acad Sci USA 96: 4908–4913

    PubMed  Google Scholar 

  • Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136: 1307–1322

    PubMed  Google Scholar 

  • —, Ducruix A, Pantaloni D (1999) Signalling to actin: the Cdc42-N-WASP-Arp2/3 connection. Chem Biol 6: R235-R240

    PubMed  Google Scholar 

  • Carlsson L, Nystrom LE, Sundkvist I, Markey F, Lindberg U (1977) Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol 115: 465–483

    PubMed  Google Scholar 

  • Catlett NL, Weisman LS (1998) The terminal tail region of a yeast myosin-V mediates its attachment to vacuole membranes and sites of polarized growth. Proc Natl Acad Sci USA 95: 14799–14804

    PubMed  Google Scholar 

  • Coluccio LM, Bretscher A (1989) Reassociation of microvillar core proteins: making a microvillar core in vitro. J Cell Biol 108: 495–502

    PubMed  Google Scholar 

  • Derksen J, Rutten T, Lichtscheidl IK, de Win AHN, Pierson ES, Rongen G (1995a) Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188: 267–276

    Google Scholar 

  • — —, van Amstel T, de Win A, Doris F, Steer M (1995b) Regulation of pollen tube growth. Acta Bot Neerl 44: 93–119

    Google Scholar 

  • de Win AHN, Knuiman B, Pierson ES, Geurts H, Kengen HMP, Derksen J (1996) Development and cellular organization ofPinus sylvestris pollen tubes. Sex Plant Reprod 9: 93–101

    Google Scholar 

  • —, Pierson ES, Derksen J (1999) Rational analyses of organelle trajectories in tobacco pollen tubes reveal characteristics of the actomyosin cytoskeleton. Biophys J 76: 1648–1658

    PubMed  Google Scholar 

  • Doris FP, Steer MW (1996) Effects of fixatives and permeabilisation buffers on pollen tubes: implications for localisation of actin microfilaments using phalloidin staining. Protoplasma 195: 25–36

    Google Scholar 

  • Fath KR, Burgess DR (1993) Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein. J Cell Biol 120: 117–127

    PubMed  Google Scholar 

  • Fedorov AA, Ball T, Mahoney NM, Valenta R, Almo SC (1997) The molecular basis for allergen cross-reactivity: crystal structure and IgE-epitope mapping of birch pollen profilin. Structure 5: 33–45

    PubMed  Google Scholar 

  • Feijó JA, Malhó R, Obermeyer G (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187: 155–167

    Google Scholar 

  • —, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144: 483–496

    PubMed  Google Scholar 

  • Franke WW, Herth W, VanDerWoude WJ, Morre DJ (1972) Tubular and filamentous structures in pollen tubes: possible involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 105: 317–341

    Google Scholar 

  • Gibbon BC, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11: 2349–2363

    PubMed  Google Scholar 

  • Gupta GD, Heath IB (1997) Actin disruption by latrunculin B causes turgor-related changes in tip growth ofSaprolegnia ferax hyphae. Fungal Genet Biol 21: 64–75

    PubMed  Google Scholar 

  • Gutsche-Perelroizen I, Lepault J, Ott A, Carlier MF (1999) Filament assembly from profilin-actin. J Biol Chem 274: 6234–6243

    PubMed  Google Scholar 

  • Harold FM, Harold RL, Money NP (1995) What forces drive cellwall expansion? Can J Bot Rev Can Bot 73: S379-S383

    Google Scholar 

  • Haugwitz M, Noegel AA, Rieger D, Lottspeich F, Schleicher M (1991)Dictyostelium discoideum contains two profilin isoforms that differ in structure and function. J Cell Sci 100: 481–489

    PubMed  Google Scholar 

  • Hayden SM, Miller PS, Brauweiler A, Bamburg JR (1993) Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry 32: 9994–10004

    PubMed  Google Scholar 

  • Heacock CS, Bamburg JR (1983) The quantitation of G- and F-actin in cultured cells. Anal Biochem 135: 22–36

    PubMed  Google Scholar 

  • Heath IB, Steinberg G (1999) Mechanisms of hyphal tip growth: tube dwelling amebae revisited. Fungal Genet Biol 28: 79–93

    PubMed  Google Scholar 

  • Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. Int Rev Cytol 107: 1–78

    Google Scholar 

  • —, Heslop-Harrison Y (1989a) Actomyosin and movement in the angiosperm pollen tube: an interpretation of some recent results. Sex Plant Reprod 2: 199–207

    Google Scholar 

  • — — (1989b) Myosin associated with the surfaces of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes. J Cell Sci 94: 319–325

    Google Scholar 

  • — — (1990) Dynamic aspects of apical zonation in the angiosperm pollen tube. Sex Plant Reprod 3: 187–194

    Google Scholar 

  • — — (1991) The actin cytoskeleton in unfixed pollen tubes following microwave-accelerated DMSO-permeabilisation and TRITC-phalloidin staining. Sex Plant Reprod 4: 6–11

    Google Scholar 

  • Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9: 1999–2010

    PubMed  Google Scholar 

  • Igarashi H, Vidali L, Yokota E, Sonobe S, Hepler PK, Shimmen T (1999) Actin filaments purified from tobacco cultured BY-2 cells can be translocated by plant myosin. Plant Cell Physiol 40: 1167–1171

    Google Scholar 

  • Iwanami Y (1956) Protoplasmic movement in pollen grains and tubes. Phytomorphology 6: 288–295

    Google Scholar 

  • Janmey PA, Matsudaira PT (1988) Functional comparison of villin and gelsolin: effects of Ca2+, KCl, and polyphosphoinositides. J Biol Chem 263: 16738–16743

    PubMed  Google Scholar 

  • —, Iida K, Yin HL, Stossel TP (1987) Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J Biol Chem 262: 12228–12236

    PubMed  Google Scholar 

  • Kaiser DA, Vinson VK, Murphy DB, Pollard TD (1999) Profilin is predominantly associated with monomeric actin inAcanthamoeba. J Cell Sci 112: 3779–3790

    PubMed  Google Scholar 

  • Kang F, Purich DL, Southwick FS (1999) Profilin promotes barbedend actin filament assembly without lowering the critical concentration. J Biol Chem 274: 36963–36972

    PubMed  Google Scholar 

  • Kim SR, Kim Y, An G (1993) Molecular cloning and characterization of anther-preferential cDNA encoding a putative actin-depolymerizing factor. Plant Mol Biol 21: 39–45

    PubMed  Google Scholar 

  • Klahre U, Chua NH (1999) TheArabidopsis actin-related protein 2 (AtARP2) promoter directs expression in xylem precursor cells and pollen. Plant Mol Biol 41: 65–73

    PubMed  Google Scholar 

  • Kohno T, Shimmen T (1988a) Accelerated sliding of pollen tube organelles alongCharaceae actin bundles regulated by Ca2+. J Cell Biol 106: 1539–1543

    Google Scholar 

  • — — (1988b) Mechanism of Ca2+ inhibition of cytoplasmic streaming in lily pollen tubes. J Cell Sci 91: 501–509

    Google Scholar 

  • —, Chaen S, Shimmen T (1990) Characterization of the translocator associated with pollen tube organelles. Protoplasma 154: 179–183

    Google Scholar 

  • Kost B, Spielhofer P, Chua NH (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16: 393–401

    PubMed  Google Scholar 

  • —, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH (1999) Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145: 317–330

    PubMed  Google Scholar 

  • Krauze K, Makuch R, Stepka M, Dabrowska R (1998) The first caldesmon-like protein in higher plants. Biochem Biophys Res Commun 247: 576–579

    PubMed  Google Scholar 

  • Lamb JA, Allen PG, Tuan BY, Janmey PA (1993) Modulation of gelsolin function: activation at low pH overrides Ca2+ requirement. J Biol Chem 268: 8999–9004

    PubMed  Google Scholar 

  • Lancelle SA, Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes ofLilium longiflorum. Protoplasma 167: 215–230

    Google Scholar 

  • —, Cresti M, Hepler PK (1987) Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes ofNicotiana alata. Protoplasma 140: 141–150

    Google Scholar 

  • Lazzaro MD (1996) The actin microfilaments network within elongation pollen tubes of the gymnospermPicea abies (Norway spruce). Protoplasma 194: 186–194

    Google Scholar 

  • Li R, Zheng Y, Drubin DG (1995) Regulation of cortical actin cytoskeleton assembly during polarized cell growth in budding yeast. J Cell Biol 128: 599–615

    PubMed  Google Scholar 

  • Loisel TP, Boujemaa R, Pantaloni D, Carlier MF (1999) Reconstitution of actin-based motility ofListeria andShigella using pure proteins. Nature 401: 613–616

    PubMed  Google Scholar 

  • Lopez I, Anthony RG, Maciver SK, Jiang CJ, Khan S, Weeds AG, Hussey PJ (1996) Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins. Proc Natl Acad Sci USA 93: 7415–7420

    PubMed  Google Scholar 

  • Machesky LM, Gould KL (1999) The Arp2/3 complex: a multifunctional actin organizer. Curr Opin Cell Biol 11: 117–121

    PubMed  Google Scholar 

  • —, Atkinson SJ, Ampe C, Vandekerckhove J, Pollard TD (1994) Purification of a cortical complex containing two unconventional actins fromAcanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol 127: 107–115

    PubMed  Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5: 1303–1314

    PubMed  Google Scholar 

  • —, Lafountain J (1972) Protoplasmic streaming, cytochalasin B, and growth of the pollen tube. Tissue Cell 4: 11–14

    PubMed  Google Scholar 

  • Matsudaira P, Jakes R, Walker JE (1985) A gelsolin-like Ca2+-dependent actin-binding domain in villin. Nature 315: 248–250

    PubMed  Google Scholar 

  • May RC, Hall ME, Higgs HN, Pollard TD, Chakraborty T, Wehland J, Machesky LM, Sechi AS (1999) The Arp2/3 complex is essential for the actin-based motility ofListeria monocytogenes. Curr Biol 9: 759–762

    PubMed  Google Scholar 

  • Miller DD, Callaham DA, Gross DJ, Hepler PK (1992) Free Ca2+ gradient in growing pollen tubes ofLilium. J Cell Sci 101: 7–12

    Google Scholar 

  • —, Scordilis SP, Hepler PK (1995) Identification and localization of three classes of myosins in pollen tubes ofLilium longiflorum andNicotiana alata. J Cell Sci 108: 2549–2563

    PubMed  Google Scholar 

  • —, Lancelle SA, Hepler PK (1996) Actin microfilaments do not form a dense meshwork inLilium longiflorum pollen tube tips. Protoplasma 195: 123–132

    Google Scholar 

  • Moriyama K, Iida K, Yahara I (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1: 73–86

    PubMed  Google Scholar 

  • Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95: 6181–6186

    PubMed  Google Scholar 

  • Pantaloni D, Carlier MF (1993) How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell 75: 1007–1014

    PubMed  Google Scholar 

  • —, Boujemaa R, Didry D, Gounon P, Carlier MF (2000) The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nat Cell Biol 2: 385–391

    PubMed  Google Scholar 

  • Perdue TD, Parthasarathy MV (1985) In situ localization of F-actin in pollen tubes. Eur J Cell Biol 39: 13–20

    Google Scholar 

  • Perelroizen I, Didry D, Christensen H, Chua NH, Carlier MF (1996) Role of nucleotide exchange and hydrolysis in the function of profilm in actin assembly. J Biol Chem 271: 12302–12309

    PubMed  Google Scholar 

  • Pickett-Heaps JD, Klein AG (1998) Tip growth in plant cells may be amoeboid and not generated by turgor pressure. Proc R Soc Lond Ser B Biol Sci 265: 1453–1459

    Google Scholar 

  • Picton JM, Steer MW (1981) Determination of secretory vesicle production rates by dictyosomes in pollen tubes ofTradescantia using cytochalasin D. J Cell Sci 49: 261–272

    PubMed  Google Scholar 

  • — — (1982) A model for the mechanism of tip extension in pollen tubes. J Theor Biol 98: 15–20

    Google Scholar 

  • Pierson ES (1988) Rhodamine-phalloidin staining of F-actin in pollen after dimethyl sulphoxide permeabilisation: a comparison with the conventional formaldehyde preparation. Sex Plant Reprod 1: 83–87

    Google Scholar 

  • —, Cresti M (1992) Cytoskeleton and cytoplasmic organization of pollen and pollen tubes. Int Rev Cytol 140: 73–125

    Google Scholar 

  • —, Derksen J, Traas JA (1986) Organization of microfilaments and microtubules in pollen tubes grown in vitro or in vivo in various angiosperms. Eur J Cell Biol 41: 14–18

    Google Scholar 

  • —, Lichtscheidl IK, Derksen J (1990) Structure and behaviour of organelles in living pollen tubes ofLilium longiflorum. J Exp Bot 41: 1461–1468

    Google Scholar 

  • —, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6: 1815–1828

    PubMed  Google Scholar 

  • Pollard TD, Cooper JA (1986) Actin and actin-binding proteins: a critical evaluation of mechanisms and functions. Annu Rev Biochem 55: 987–1035

    PubMed  Google Scholar 

  • Reichstein E, Korn ED (1979)Acanthamoeba profilin: a protein of low molecular weight fromAcanthamoeba castellanii that inhibits actin nucleation. J Biol Chem 254: 6174–6179

    PubMed  Google Scholar 

  • Sanders LC, Lord EM (1992) A dynamic role for the stylar matrix in pollen tube extension. Int Review of Cytol 140: 297–318

    Google Scholar 

  • Schafer DA, Cooper JA (1995) Control of actin assembly at filament ends. Annu Rev Cell Dev Biol 11: 497–518

    PubMed  Google Scholar 

  • Shimmen T, Yokota E (1994) Physiological and biochemical aspects of cytoplasmic streaming. Int Rev Cytol 155: 97–139

    Google Scholar 

  • Smertenko AP, Jiang CJ, Simmons NJ, Weeds AG, Davies DR, Hussey PJ (1998) Seró in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J 14: 187–193

    PubMed  Google Scholar 

  • Staiger CJ, Schliwa M (1987) Actin localization and function in higher plants. Protoplasma 141: 1–12

    Google Scholar 

  • —, Gibbon BC, Kovar DR, Zonia LE (1997) Profilin and actindepolymerizing factor: modulators of actin organization in plants. Trends Plant Sci 2: 275–281

    Google Scholar 

  • Steer MW, Steer JM (1989) Pollen tube tip growth. New Phytol 111: 323–358

    Google Scholar 

  • Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145: 1009–1026

    PubMed  Google Scholar 

  • Tang XJ, Hepler PK, Scordilis SP (1989) Immunochemical and immunocytochemical identification of a myosin heavy chain polypeptide inNicotiana pollen tubes. J Cell Sci 92: 569–574

    PubMed  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48: 461–491

    PubMed  Google Scholar 

  • Tilney LG, Bonder EM, Coluccio LM, Mooseker MS (1983) Actin fromThyone sperm assembles on only one end of an actin filament: a behavior regulated by profilin. J Cell Biol 97: 112–124

    PubMed  Google Scholar 

  • —, DeRosier DJ, Weber A, Tilney MS (1992) HowListeria exploits host cell actin to form its own cytoskeleton II: nucleation, actin filament polarity, filament assembly, and evidence for a pointed end capper. J Cell Biol 118: 83–93

    PubMed  Google Scholar 

  • Tiwari SC, Polito VS (1988) Organization of the cytoskeleton in pollen tubes ofPyrus communis: a study employing conventional and freeze-substitution electron microscopy, immunofluorescence, and rhodamine-phalloidin. Protoplasma 147: 100–112

    Google Scholar 

  • Tominaga M, Yokota E, Vidali L, Sonobe S, Hepler PK, Shimmen T (2000) The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells ofHydrocharis. Planta 210: 836–843

    PubMed  Google Scholar 

  • Valenta R, Duchene M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D, Scheiner O (1991) Identification of profilin as a novel pollen allergen: IgE autoreactivity in sensitized individuals. Science 253: 557–560

    PubMed  Google Scholar 

  • Vardar D, Buckley DA, Frank BS, McKnight CJ (1999) NMR structure of an F-actin-binding “headpiece” motif from villin. J Mol Biol 294: 1299–1310

    PubMed  Google Scholar 

  • Vidali L, Hepler PK (1997) Characterization and localization of profilin in pollen grains and tubes ofLilium longiflorum. Cell Motil Cytoskeleton 36: 323–338

    PubMed  Google Scholar 

  • — — (2000) Actin in pollen and pollen tubes. In: Staiger CJ, Baluska F, Volkmann D, Barlow P (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 323–345

    Google Scholar 

  • —, Yokota E, Cheung AY, Shimmen T, Hepler PK (1999) The 135 kDa actin-bundling protein fromLilium longiflorum pollen is the plant homologue of villin. Protoplasma 209: 283–291

    Google Scholar 

  • Weber A, Northrop J, Bishop MF, Ferrone FA, Mooseker MS (1987) Nucleation of actin polymerization by villin and elongation at subcritical monomer concentration. Biochemistry 26: 2528–2536

    PubMed  Google Scholar 

  • Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401: 505–508

    PubMed  Google Scholar 

  • Yokota E, Shimmen T (1994) Isolation and characterization of plant myosin from pollen tubes of lily. Protoplasma 177: 153–162

    Google Scholar 

  • — — (1999) The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta 209: 264–266

    PubMed  Google Scholar 

  • —, Muto S, Shimmen T (1999) Inhibitory regulation of higher-plant myosin by Ca2+ ions. Plant Physiol 119: 231–240

    PubMed  Google Scholar 

  • — —, (2000) Ca2+-calmodulin suppresses the F-actin binding activity of a 135-kDa actin-bundling protein isolated from lily pollen tubes. Plant Physiol 123: 645–654

    PubMed  Google Scholar 

  • —, Takahara K-i, Shimmen T (1998) Actin-bundling protein isolated from pollen tubes of lily: biochemical and immunocytochemical characterization. Plant Physiol 116: 1421–1429

    PubMed  Google Scholar 

  • Yonezawa N, Nishida E, Sakai H (1985) pH control of actin polymerization by cofilin. J Biol Chem 260: 14410–14412

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vidali.

Additional information

Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidali, L., Hepler, P.K. Actin and pollen tube growth. Protoplasma 215, 64–76 (2001). https://doi.org/10.1007/BF01280304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01280304

Keywords

Navigation