Skip to main content
Log in

The supramolecular organization of red algal cell membranes and their participation in the biosynthesis and secretion of extracellular polysaccharides: a review

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The relationship between the supramolecular organization of red algal cell membranes and the biosynthesis and secretion of the cell wall skeletal and matrix polysaccharides is reviewed. Freeze-fracture studies have revealed that organized macromolecular structures — “linear terminal complexes” and “tetrads” — are present on the plasma membrane and on membranes of the endomembrane system. The “linear terminal complexes” seem to be involved in the biosynthesis, assembly, and orientation of the cellulose microfibrils and the “tetrads” in the synthesis of the matrix polysaccharides. It is shown how the research on the supramolecular organization of cell membranes has increased the knowledge on the biosynthesis and secretion of the extracellular crystalline and non-crystalline polysaccharides in red algae. In this review, the progress to date is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell, 3rd edn. Garland, New York

    Google Scholar 

  • Alley CD, Scott JL (1977) Unusual dictyosome morphology and vesicle formation in tetrasporangia of the marine red algaPolysiphonia denudata. J Ultrastruct Res 58: 289–298

    PubMed  Google Scholar 

  • Bartnicki-Garcia S (1973) Fundamental aspects of hyphal morphogenesis. Symp Soc Gen Microbiol 23: 245–267

    Google Scholar 

  • Bellanger F, Verdus MC, Henocq V, Christiaen D (1990) Determination of the composition of the fibrillar part ofGracilaria verrucosa (Gracilariales, Rhodophyta) cell wall in order to prepare protoplasts. Hydrobiologia 204/205: 527–531

    Google Scholar 

  • Brawley SH, Wetherbee R (1981) Cytology and ultrastructure. In: Loban CS, Wynne MJ (eds) The biology of seaweeds. Blackwell, Oxford, pp 248–299 (Botanical monographs, vol 17)

    Google Scholar 

  • Broadwater ST, Scott JL, Garbary DJ (1992) Cytoskeleton and mitotic spindle in red algae. In: Menzel D (ed) The cytoskeleton of the algae. CRC Press, Boca Raton, pp 93–112

    Google Scholar 

  • Brown RM Jr (ed) (1982) Cellulose and other natural polymer systems: biosynthesis, structure, and degradation. Plenum, New York

    Google Scholar 

  • — (1985) Cellulose microfibril assembly and orientation: recent developments. J Cell Sci Suppl 2: 13–32

    PubMed  Google Scholar 

  • —, Montezinos D (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci USA 73: 143–147

    PubMed  Google Scholar 

  • —, Kleinig H, Falk H, Sitte P, Franke W (1970) Scale formation in chrysophycean algae. J Cell Biol 45: 246–271

    PubMed  Google Scholar 

  • —, Willison JHM, Richardson CL (1976) Cellulose biosynthesis inAcetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73: 4565–4569

    PubMed  Google Scholar 

  • Buvat R (1971) Origin and continuity of cell vacuoles. In: Reinert JH, Ursprung H (eds) Origin and continuity of cell organelles. Springer, Berlin Heidelberg New York, pp 127–157

    Google Scholar 

  • Chamberlain AHL, Evans LV (1973) Aspects of spore production in the red algaCeramium. Protoplasma 76: 139–159

    Google Scholar 

  • Chanzy H, Henrissat B, Vuong R (1984) Colloidal gold labelling of 1,4-β-glucan cellobiohydrolase adsorbed cellulose substrates. FEBS Lett 172: 193–197

    Google Scholar 

  • Cole KM, Sheath RG (eds) (1990) Biology of the red algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Colvin JR (1972) The structure and biosynthesis of cellulose. CRC Crit Rev Macromol Sci 1: 47–81

    Google Scholar 

  • Cousins SK, Brown RM Jr (1995) Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36: 3885–3888

    Google Scholar 

  • Craigie JS (1990) Cell walls. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 221–257

    Google Scholar 

  • Delivopoulos SG (1982) A light and electron microscopy study on carposporogenesis of the marine red algaGracilaria verrucosa (Hudson) Papenfuss. Doctoral dissertation, University of Thessaloniki, Thessaloniki, Greece

    Google Scholar 

  • —, Diannelidis BE (1990) Ultrastructure of carposporogenesis in the red algaCaulacanthus ustulatus (Gigartinales, Caulacanthaceae). Ann Bot 66: 387–395

    Google Scholar 

  • —, Kugrens P (1984) Ultrastructure of carposporogenesis in the parasitic red algaFaucheocolax attenuata Setch. (Rhodymeniales, Rhodymeniaceae). Am J Bot 71: 1245–1259

    Google Scholar 

  • — — (1985) Ultrastructure of carposporophyte development in the red algaGloiosiphonia verticillaris (Cryptonemiales, Gloiosiphoniaceae). Am J Bot 72: 1926–1938

    Google Scholar 

  • —, Tsekos I (1986) Ultrastructure of carposporogenesis in the red algaGracilaria verrucosa (Gigartinales, Gracilariaceae). Bot Mar 29: 27–35

    Google Scholar 

  • —, Pellegrini M, Pellegrini L (1989) Ultrastructure of the developing tip of the thallus in the red algaGigartina dura (C. Agardh) J. Agardh (Gigartinales, Gracilariaceae). Cytobios 57: 177–184

    Google Scholar 

  • Delmer DP (1987) Cellulose synthesis. Annu Rev Plant Physiol 38: 259–290

    Google Scholar 

  • —, (1991) The biochemistry of cellulose synthesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, New York, pp 100–107

    Google Scholar 

  • Dunphy WG, Rothman JE (1985) Compartmental organization of the Golgi stack. Cell 42: 13–21

    PubMed  Google Scholar 

  • Emons AMC (1991) Role of particle rosettes and terminal globules in cellulose synthesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 71–98

    Google Scholar 

  • Evans LV, Callow ME (1974) Polysaccharide sulphation inLaminaria. Planta 117: 93–95

    Google Scholar 

  • —, Simpson M, Callow ME (1973) Sulphated polysaccharide synthesis in brown algae. Planta 110: 237–252

    Google Scholar 

  • — —, Percival E, Fareed W (1974) Studies on the synthesis and composition of extracellular mucilage in the unicellular red algaRhodella. J Cell Sci 16: 1–21

    PubMed  Google Scholar 

  • Farquhar MG (1985) Progress in unraveling pathways of Golgi traffic. Annu Rev Cell Biol 1: 447–488

    PubMed  Google Scholar 

  • —, Palade G (1981) The Golgi apparatus (complex) (1954–1981) — from artifact to center stage. J Cell Biol 91: 77s-103s

    PubMed  Google Scholar 

  • Galway ME, Hardham AR (1986) Microtubule reorganization, cell wall synthesis and establishment of the axis of elongation in regenerating protoplasts of the algaMougeotia. Protoplasma 135: 140–143

    Google Scholar 

  • Garbary DJ, McDonald AR (1996) Fluorescent labelling of the cytoskeleton inCeramium strictum (Rhodophyta). J Phycol 32: 85–93

    Google Scholar 

  • — —, Duckett JG (1991) The cytoskeleton of red algae. J Phycol 27 Suppl: 24

    Google Scholar 

  • — — — (1992) Visualization of the cytoskeleton in red algae using fluorescent labelling. New Phytol 120: 435–444

    Google Scholar 

  • Gardner KH, Blackwell (1971) The substructure of crystalline cellulose and chitin microfibrils. J Polymer Sci C 36: 327–340

    Google Scholar 

  • Giddings TH Jr, Staehelin LA (1991) Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, New York, pp 85–99

    Google Scholar 

  • —, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane ofMicrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84: 327–339

    PubMed  Google Scholar 

  • Green PB (1969) Cell morphogenesis. Annu Rev Plant Physiol 20: 365–394

    Google Scholar 

  • Gretz MR, Vollmer CM (1989) Cellulosic cell walls of red algae. In: Schuerch C (ed) Cellulose and wood: chemistry and technology. Wiley, New York, pp 623–637

    Google Scholar 

  • —, Aronson JM, Sommerfeld MR (1980) Cellulose in the cell walls of the Bangiophyceae (Rhodophyta). Science 207: 779–781

    Google Scholar 

  • —, McCandless E, Aronson JM, Sommerfeld MR (1983) The galactan sulphates of the conchocelis phases ofPorphyra leucosticta andBangia atropurpurea (Rhodophyta). J Exp Bot 34: 705–711

    Google Scholar 

  • —, Aronson JM, Sommerfeld MR (1984) Taxonomic significance of cellulosic cell walls in the Bangiales (Rhodophyta). Phytochemistry 23: 2513–2524

    Google Scholar 

  • — — — (1986) Cell wall composition of the conchocelis phases ofBangia atropurpurea andPorphyra leucosticta (Rhodophyta). Bot Mar 29: 91–96

    Google Scholar 

  • —, Sommerfeld MR, Athey PV, Aronson JM (1991a) Chemical composition of the cell walls of the freshwater red algaLemanea annulata (Batrachospermales). J Phycol 27: 232–240

    Google Scholar 

  • —, Wu Y, Scott J, Vreeland V (1991b) Ultrastructural immunogold localization of carrageenan in the Golgi complex ofAgardhiella subulata. J Phycol 27 Suppl: abstract 134

    Google Scholar 

  • Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit of the Golgi complex. Science 234: 438–443

    PubMed  Google Scholar 

  • Haigler CH (1985) The functions and biosynthesis of native cellulose. In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Horwood, Chichester, pp 30–83

    Google Scholar 

  • —, Benziman M (1982) Biogenesis of cellulose I microfibrils occurs by cell-directed self-assembly inAcetobacter xylinum. In: Brown RM Jr (ed) Cellulose and other natural polymer systems. Plenum, New York, pp 273–297

    Google Scholar 

  • —, Brown RM Jr (1986) Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells ofZinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134: 111–120

    Google Scholar 

  • —, Weimer P (eds) (1991) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York

    Google Scholar 

  • Harris N, Watson MD (1991) Vesicle transport to the vacuole and the central role of the Golgi apparatus. In: Hawes GR, Coleman JOD, Evans DE (eds) Endocytosis, exocytosis and vesicle traffic in plants. Cambridge University Press, Cambridge, pp 141–164

    Google Scholar 

  • Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, San Diego

  • Herth W (1983) Arrays of plasma-membrane “rosettes” involved in cellulose microfibril formation ofSpirogyra. Planta 159: 347–356

    Google Scholar 

  • — (1985) Plant cell wall formation. In: Robards AW (ed) Botanical microscopy. Oxford University Press, Oxford, pp 285–310

    Google Scholar 

  • Hotchkiss AT Jr (1989) Cellulose biosynthesis. The terminal complex hypothesis and its relationship to other contemporary research topics. In: Lewis NC, Paice MG (eds) Plant cell wall polymers: biogenesis and biodegradation. American Chemical Society, Washington, DC, pp 232–247 (ACS Symposium series, no 399)

    Google Scholar 

  • Itoh T (1990) Cellulose synthesizing complexes in some giant marine algae. J Cell Sci 95: 309–319

    Google Scholar 

  • —, Brown RM Jr (1984) The assembly of cellulose microfibrils inValonia macrophysa Kutz. Planta 160: 372–381

    Google Scholar 

  • — — (1988) Development of cellulose synthesizing complexes inBoergesenia andValonia. Protoplasma 144: 160–169

    Google Scholar 

  • Katsaros C, Reiss H-D, Schnepf E (1996) Freeze-fracture studies in brown algae: putative cellulose-synthesizing complexes on the plasma membrane. Eur J Phycol 31: 41–48

    Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the skeletal and matrix polysaccharides. Oceanogr Mar Biol Annu Rev 26: 259–315

    Google Scholar 

  • Knox RB, Heslop-Harrison J (1971) Pollen-wall proteins: electron-microscopic localization of acid phosphatase in the intine ofCrocus venus. J Cell Sci 8: 727–733

    PubMed  Google Scholar 

  • Kobayashi H, Fukuda H, Shibaoka H (1988) Interrelation between the spatial disposition of actin filaments and microtubules during the differentiation of tracheary elements in culturedZinnia cells. Protoplasma 143: 29–37

    Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach, Montreux (Polymer monographs, vol 11)

    Google Scholar 

  • Kroen WK, Ramus J (1990) Viscous polysaccharide and starch synthesis inRhodella reticulata (Porphyridiales, Rhodophyta). J Phycol 26: 266–271

    Google Scholar 

  • Kuga S, Takagi S, Brown RM Jr (1993) Native folded-chain cellulose II. Polymer 34: 3293–3297

    Google Scholar 

  • Kugrens P, Delivopoulos SG (1986) Ultrastructure of the carposporophyte and carposporogenesis in the parasitic red algaPlocamiocolax pulvinata Setch. (Gigartinales, Plocamiaceae). J Phycol 22: 8–21

    Google Scholar 

  • Lending CR, Larkins BA (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1: 1001–1023

    Google Scholar 

  • Lupescu N, Geresh S, Arad (Malis) S, Bernstein MA, Glaser R (1991) Isolation and structure determination of some sulfated monosugars from the extracellular polysaccharide ofPorphyridium sp., a unicellular red alga. Carbohydr Res 210: 349–352

    Google Scholar 

  • McBride DL, Cole K (1971) Electron microscopic observations on the differentiation and release of monospores in the marine red algaSmithora naiadum. Phycologia 10: 49–61

    Google Scholar 

  • McDonald AR, Garbary DJ, Mitman GC, Chen LC-M (1992) Rhodamine-phalloidin labelling of the actin cytoskeleton inPorphyra leucosticta (Bangiaceae, Rhodophyta). Kor J Phycol 7: 161–166

    Google Scholar 

  • — —, Duckett JG (1993) Rhodamine-phalloidin staining of F-actin in the Rhodophyta. Biotech Histochem 68: 91–98

    PubMed  Google Scholar 

  • Millard P, Evans LV (1982) Sulphate uptake in the unicellular marine red algaRhodella maculata. Arch Microbiol 131: 165–169

    Google Scholar 

  • Mizuta S, Brown RM Jr (1992) High resolution analysis of the formation of cellulose synthesizing complexes inVaucheria hamata. Protoplasma 166: 187–199

    Google Scholar 

  • —, Katoh S, Harada T, Yamada H, Okuda K, Morinaga T (1991) Involvement of cytoskeletal microtubules in microfibrillar patterns in the cell walls of the developing coenocytic green alga,Boodlea coacta. Bot Mar 34: 417–424

    Google Scholar 

  • Morré DJ, Mollenhauer HH (1974) The endomembrane concept: a functional integration of endoplasmic reticulum and Golgi apparatus. In: Robards AW (ed) Dynamic aspects of plant ultrastructure. McGraw-Hill, London, pp 84–137

    Google Scholar 

  • —, Kartenbeck J, Franke WW (1979) Membrane flow and interconversions among endomembranes. Biochim Biophys Acta 559: 71–152

    PubMed  Google Scholar 

  • Mukai LS, Craigie JS, Brown RG (1981) Chemical composition and structure of the cell walls of the conchocelis and thallus phases ofPorphyra tenera (Rhodophyceae). J Phycol 17: 192–198

    Google Scholar 

  • Myers A, Preston RD (1959) Fine structure in the red algae. III. A general survey of cell-wall structure in the red algae. Proc R Soc London Biol 150: 456–459

    Google Scholar 

  • Northcote DH (1991) Site of cellulose systems. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 165–176

    Google Scholar 

  • Novikoff AB, Essner E, Goldfischer S, Heus M (1962) Nucleoside phosphatase activities of cytomembranes. In: Harris RJC (ed) Interpretation of ultrastructure. Symposium of the International Society of Cell Biology, vol I. Academic Press, New York, pp 149–192

    Google Scholar 

  • Novikoff PM (1987) The lysosomal concept: from isolated particles to acid hydrolase compartment of the cell. Cell Biol 1: 59–95

    Google Scholar 

  • Okuda K, Mizuta S (1993) Diversity and evolution of putative cellulose-synthesizing enzyme complexes in green plants. Jpn J Phycol 41: 151–173

    Google Scholar 

  • —, Tsekos I, Brown RM Jr (1994) Cellulose microfibril assembly inErythrocladia subintegra Rosenv.: an ideal system for understanding the relationship between synthesizing complexes (TCs) and microfibril crystallization. Protoplasma 180: 49–58

    Google Scholar 

  • Oparka KJ, Harris N (1982) Rice protein body formation: all types are initiated of the ER. Planta 154: 184–188

    Google Scholar 

  • Peng HB, Jaffe LF (1976) Cell wall formation inPelvetia embryos. A freeze-fracture study. Planta 133: 57–71

    Google Scholar 

  • Percival E, Foyle RAJ (1979) The extracellular polysaccharides ofPorphyridium cruentum andPorphyridium aerugineum. Carbohydr Res 72: 165–176

    Google Scholar 

  • Pillai MC, Baldwain JD, Cherr GN (1992) Early development in an algal gametophyte: role of the cytoskeleton in germination and nuclear translocation. Protoplasma 170: 34–45

    Google Scholar 

  • Pueschel CM (1979) Ultrastructure of tetrasporogenesis inPalmaria palmata (Rhodophyta). J Phycol 15: 409–424

    Google Scholar 

  • Quader H (1991) Role of linear terminal complexes in cellulose synthesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 51–69

    Google Scholar 

  • Rambourg A, Clermont Y, Hermo L, Secretain D (1987) Tridimensional architecture of the Golgi apparatus and its components in mucous cells of Brunner's glands of the mouse. Am J Anat 179: 95–107

    PubMed  Google Scholar 

  • Ramus J (1972) The production of extracellular polysaccharide by the unicellular red algaPorphyridium aerugineum. J Phycol 8: 97–111

    Google Scholar 

  • —, Groves S (1972) Incorporation of sulfate into the capsular polysaccharide of the red algaPorphyridium. J Cell Biol 54: 399–407

    PubMed  Google Scholar 

  • —, Robins DM (1975) The correlation of Golgi activity and polysaccharide secretion inPorphyridium. J Phycol 11: 70–74

    Google Scholar 

  • Ray PM, Eisinger R, Robinson DG (1976) Organelles involved in cell wall polysaccharide formation and transport in pea cells. Ber Dtsch Bot Ges 89: 129–146

    Google Scholar 

  • Reiss H-D, Schnepf E, Herth W (1984) The plasma membrane of theFunaria caulonema tip cell: morphology and distribution of the particle rosettes and the kinetics of cellulose synthesis. Planta 160: 428–435

    Google Scholar 

  • Richmond PA (1991) Occurrence and functions of native cellulose. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 5–23

    Google Scholar 

  • Robinson DG (1985) Plant membranes. Endo- and plasma membranes of plant cells. Wiley, New York

    Google Scholar 

  • Romanovicz DK (1982) The role of the Golgi apparatus in the biosynthesis of natural polymer systems with particular reference to cellulose. In: RM Brown Jr (ed) Cellulose and other natural polymer systems: biogenesis, structure, and degradation. Plenum, New York, pp 127–147

    Google Scholar 

  • Ross P, Mayer R, Benziman M (1982) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55: 35–58

    Google Scholar 

  • Rothman JE (1981) The Golgi apparatus: two organelles in tandem. Science 213: 1212–1219

    PubMed  Google Scholar 

  • — (1994) Mechanisms of intracellular protein transport. Nature 372: 55–63

    PubMed  Google Scholar 

  • Rudolph U (1987) Occurrence of rosettes in the ER membrane of youngFunaria hygrometrica protonemata. Naturwissenschaften 74: 439

    Google Scholar 

  • Salmon S, Hudson SM (1996) Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. Rev Macromol Sci (in press)

  • Sawada DE (1993) Cell biology: organelle structure and function. Jones and Bartlett, Boston

    Google Scholar 

  • Schnepf E (1986) Cellular polarity. Annu Rev Plant Physiol 37: 23–47

    Google Scholar 

  • — (1988) Tip growth of plant cells. In: Ghiara G (ed) Cell interactions and differentiation. University of Naples, Naples, Italy, pp 137–152

    Google Scholar 

  • — (1993a) Golgi apparatus and slime secretion in plants: the early implications and recent models of membrane traffic. Protoplasma 172: 3–11

    Google Scholar 

  • — (1993b) Spitzenwachstum: Moosprotonemen als Modell für die Bildung von Zellwänden. Naturwissenschaften 80: 302–313

    Google Scholar 

  • Scott JL, Dixon PS (1973) infrastructure of tetrasporogenesis in the marine red algaPtilota hypnoides. J Phycol 9: 29–46

    Google Scholar 

  • Staehelin LA, Giddings TH (1982) Membrane-mediated control of cell wall microfibrillar order. In: Subtelny S, Green PB (eds) Developmental order: its origin and regulation. AR Liss, New York, pp 133–147

    Google Scholar 

  • — —, Kiss JZ, Sack FR (1990) Macromolecular differentiation of Golgi stacks in root tips ofArabidopsis andNicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples. Protoplasma 157: 75–91

    PubMed  Google Scholar 

  • — —, Levy S, Lynch MA, Moore PJ, Swords KMM (1991) Organisation of the secretory pathway of cell wall glycoproteins and complex polysaccharides in plant cells. In: Hawes CR, Coleman JOD, Evans DE (eds) Endocytosis, exocytosis and vesicles traffic in plants. Cambridge University Press, Cambridge, pp 181–198

    Google Scholar 

  • Steer MW, Steer JM (1989) Pollen tube tip growth. Ansley Review no 16. New Phytol 111: 323–358

    Google Scholar 

  • Tarchevsky IA, Marchenko GN (1991) Cellulose: biosynthesis and structure. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Thiéry JP (1967) Mise en evidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc 6: 987–1018

    Google Scholar 

  • Tsekos I (1981) Growth and differentiation of the Golgi apparatus and wall formation during carposporogenesis in the red algaGigartina teedii (Roth) Lamour. J Cell Sci 52: 71–84

    PubMed  Google Scholar 

  • — (1982) Tumour-like growths induced by bacteria in the thallus of a red alga,Gigartina teedii (Roth) Lamour. Ann Bot 49: 123–126

    Google Scholar 

  • — (1983) The ultrastructure of carposporogenesis inGigartina teedii (Roth) Lamour. (Gigartinales, Rhodophyceae): gonimoblast cells and carpospores. Flora 174: 191–211

    Google Scholar 

  • — (1985) The endomembrane system of differentiating carposporangia in the red algaChondria tenuissima: occurrence and participation in secretion of polysaccharidic and proteinaceous substances. Protoplasma 129: 127–136

    Google Scholar 

  • —, Reiss H-D (1988) Occurrence and transport of particle “tetrads” in the cell membranes of the unicellular red algaPorphyridium visualized by freeze fracture. J Ultrastruct Mol Struct Res 99: 156–168

    Google Scholar 

  • — — (1992) Occurrence of the putative microfibril-synthesizing complexes (linear terminal complexes) in the plasma membrane of the epiphytic marine red algaErythrocladia subintegra Rosenv. Protoplasma 169: 57–67

    Google Scholar 

  • — — (1993) The supramolecular organization of red algal vacuole membrane visualized by freeze-fracture. Ann Bot 72: 213–222

    Google Scholar 

  • — — (1994) Tip cell growth and the frequency and distribution of cellulose microfibril-synthesizing complexes in the plasma membrane of apical shoot cells of the red algaPorphyra yezoensis. J Phycol 30: 300–310

    Google Scholar 

  • —, Schnepf E (1983) The ultrastructure of carposporogenesis inGigartina teedii (Roth) Lamour. (Gigartinales, Rhodophyceae): auxiliary cell, cystocarpic plant. Flora 173: 81–96

    Google Scholar 

  • — — (1985) Ultrastructure of the early stages of carposporophyte development in the red algaChondria tenuissima (Rhodomelaceae, Ceramiales). Plant Syst Evol 151: 1–18

    Google Scholar 

  • — — (1991) Acid phosphatase activity during spore differentiation of the red algaeGigartina teedii andChondria tenuissima. Plant Syst Evol 176: 35–51

    Google Scholar 

  • — —, Makrantonakis A (1985b) The ultrastructure of tetrasporogenesis in the marine red algaChondria tenuissima (Good. et Woodw.) (Ceramiales, Rhodomelaceae). Ann Bot 55: 607–619

    Google Scholar 

  • —, Reiss H-D, Schnepf E (1985a) Occurrence of particle tetrads in the vacuole membrane of the marine red algaGigartina teedii andCeramium rubrum. Naturwissenschaften 72: 489–490

    Google Scholar 

  • — — — (1993) Cell-wall structure and supramolecular organization of the plasma membrane of marine red algae visualized by freeze-fracture. Acta Bot Neerl 42: 119–132

    Google Scholar 

  • —, Okuda K, Reiss H-D, Brown RM Jr (1995) Supramolecular organization of cell membranes and cellulose microfibril assembly and orientation in red algae. In: Proceedings of 5th International Botanical Microscopy Meetings: Plant Cell Biology. Proc R Microsc Soc 30/1: 14

    Google Scholar 

  • — —, Brown RM Jr (1996) The formation and development of cellulose-synthesizing linear terminal complexes (TCs) in the plasma membrane of the marine red algaErythrocladia subintegra Rosenv. Protoplasma 193: 33–45

    Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32: 420–424

    PubMed  Google Scholar 

  • Vreeland V, Zablakis E, Laetsch WM (1992) Monoclonal antibodies as molecular markers for the intracellular and cell wall distribution of carrageenan epitopes inKappaphycus (Rhodophyta) during tissue development. J Phycol 28: 328–342

    Google Scholar 

  • Wessels JGH (1990) Role of cell wall architecture in fungal tip growth generation. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, San Diego, pp 1–29

    Google Scholar 

  • Wetherbee R (1978) Differentiation and continuity of the Golgi apparatus during carposporogenesis inPolysiphonia (Rhodophyta). Protoplasma 95: 347–360

    Google Scholar 

  • —, West JA (1977) Golgi apparatus of unique morphology during early carposporogenesis in a red alga. J Ultrastract Res 58: 119–133

    Google Scholar 

  • Wiencke C, Läuchli A (1983) Tonoplast fine structure and osmotic regulation inPorphyra umbilicalis. Planta 159: 342–346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsekos, I. The supramolecular organization of red algal cell membranes and their participation in the biosynthesis and secretion of extracellular polysaccharides: a review. Protoplasma 193, 10–32 (1996). https://doi.org/10.1007/BF01276631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276631

Keywords