Skip to main content
Log in

The physiology of the locust ear

II. Frequency discrimination based upon resonances in the tympanum

  • Published:
Zeitschrift für vergleichende Physiologie Aims and scope Submit manuscript

Summary

  1. 1.

    The expected resonance frequencies of the tympanal membrane have been calculated from its dimensions, mass, and compliance. The thin part of the tympanal membrane may vibrate independently of the entire tympanum. Thus, there are at least two sets of resonances (Fig. 8).

  2. 2.

    The two sets of vibrations have been observed by means of laser holography (Figs. 13–15) and measured with a capacitance electrode (Figs. 16–18). The position and amplitude of the vibration patterns, the phase relationships, and the niteraction of the two sets of vibration have been studied. The results are compared with the frequency sensitivity of the four groups of receptor cells.

  3. 3.

    The groups of receptor cells are attached to four specialized areas on the tympanum (Fig. 6). The vibrations of these areas of attachment are a maximum at the frequencies of maximum sensitivity in the receptor cells (Figs. 16 and 17). Thus, the frequency discrimination seems to be a purely physical phenomenon, based partly on the presence of the tympanal resonances, and partly on the different positions of the receptor cells on the tympanal membrane.

  4. 4.

    The two sets of vibrations have different spatial positions on the tympanum. The centre of the entire-membrane-vibrations is situated in one end of the membrane (Fig. 15), whereas that of the thin-membrane-vibrations is almost at the centre of the tympanum (Fig. 14). The positions of the centers of vibration are, however, not constant (Figs. 13 and 14). Different modes may have somewhat different centre positions, and these positions may change with frequency because of interactions between the two sets of resonances. Therefore, receptor cells attached to different areas on the membrane may pick up different modes of vibration. Also, the receptor cells may almost fail to respond to some modes, if their area of attachment is at a nodal circle of these modes at resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson, N., Andersson, H., Bjelkhagen, H.: Hologram avslöjar farlige flygplansfel. Ny Teknik (Stockh.) 1970,11, 3–5.

    Google Scholar 

  • Autrum, H.: Anatomy and physiology of sound receptors in invertebrates. In: Acoustic behaviour of animals (R.-G. Busnel, ed.), p. 412–433. Amsterdam: Elsevier 1963.

    Google Scholar 

  • Békésy, G. von: Experiments in hearing. New York: McGraw-Hill 1960.

    Google Scholar 

  • —: Resonances in the cochlea? Sound3 (4), 86–91 (1969).

    Google Scholar 

  • —: Travelling waves as frequency analysers in the cochlea. Nature (Lond.)225, 1207–1209 (1970).

    Article  Google Scholar 

  • Beranek, Leo L.: Acoustics. New York: McGraw-Hill 1954.

    Google Scholar 

  • Crandall, Irving B.: Theory of vibrating systems and sound. London: MacMillan 1927.

    Google Scholar 

  • Deutsch, S.: Models of the nervous system. New York: Wiley 1967.

    Google Scholar 

  • Dumortier, B.: The physical characteristics of sound emission in Arthropoda. In: Acoustic behaviour of animals (R.-G. Busnel, ed.), p. 346–373. Amsterdam: Elsevier 1963.

    Google Scholar 

  • Evans, E. F.: Narrow “tuning” of cochlear nerve fibre responses in the guinea-pig. J. Physiol. (Lond.)206, 14–15 P (1970).

    Article  Google Scholar 

  • Gabor, D., Stroke, G. W.: Holography and its applications. Endeavour28, 40–47 (1969).

    Google Scholar 

  • Gray, E. G.: The fine structure of the insect ear. Phil. Trans. B243, 75–94 (1960).

    Article  Google Scholar 

  • Helmholtz, H. von: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Braunschweig: Vieweg 1862.

    Google Scholar 

  • Herzog, R. O.: Fortschritte in der Erkenntnis der Faserstoffe. Z. angew. Chem.39, 297–302 (1926).

    Article  CAS  Google Scholar 

  • Huxley, A. F.: Is resonance possible in the cochlea after all ? Nature (Lond.)221, 935–940 (1969).

    Article  CAS  Google Scholar 

  • Jensen, M., Weis-Fogh, T.: Biology and physics of locust flight. V. Strength and elasticity of locust cuticle. Phil. Trans. B245, 137–169 (1962).

    Article  Google Scholar 

  • Johnstone, B. M., Boyle, A. J. F.: Basilar membrane vibration examined with the Mössbauer technique. Science158, 389–390 (1967).

    Article  CAS  PubMed  Google Scholar 

  • Lax, Melvin: The effect of radiation on the vibrations of a circular diaphragm. J. acoust. Soc. Amer.16, 5–13 (1944).

    Article  Google Scholar 

  • Michelsen, Axel: Pitch discrimination in the locust ear: observations on single sense cells. J. Insect Physiol.12, 1119–1131 (1966).

    Article  CAS  PubMed  Google Scholar 

  • —: The physiology of the locust ear. I. Frequency sensitivity of single cells in the isolated ear. Z. vergl. Physiol.71, 49–62 (1971).

    Article  Google Scholar 

  • Möller, Aage R.: Studies of the damped oscillatory response of the auditory frequency analyzer. Acta physiol. scand.78, 299–314 (1970).

    Article  PubMed  Google Scholar 

  • Morse, Philip M.: Vibration and sound, 2. ed. New York: McGraw-Hill 1948.

    Google Scholar 

  • Nakajima, S., Onodera, K.: Membrane properties of the stretch receptor neurones of crayfish with particular reference to mechanisms of sensory adaptation. J. Physiol. (Lond.)200, 161–185 (1969).

    Article  CAS  Google Scholar 

  • — —: Adaptation of the generator potential in the crayfish stretch receptors under constant length and constant tension. J. Physiol. (Lond.)200, 187–204 (1969).

    Article  CAS  Google Scholar 

  • Pennington, K. S.: Advances in holography. Scient. Amer.218, 40–48 (Febr. 1968).

    Article  Google Scholar 

  • Powell, R. L., Stetson, K. A.: Interferometric vibration analysis by wavefront reconstruction. J. opt. Soc. Amer.55, 1593–1598 (1965).

    Article  Google Scholar 

  • Pumphrey, R. J.: Hearing in insects. Biol. Rev.15, 107–132 (1940).

    Article  Google Scholar 

  • Rayleigh, Lord: Theory of sound. London: MacMillan 1926.

    Google Scholar 

  • Schwabe, J.: Beiträge zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica20, 1–154 (1906).

    Google Scholar 

  • Skudrzyk, E.: Die Grundlagen der Akustik. Wien: Springer 1954.

    Book  Google Scholar 

  • Stetson, K. A.: Vibration measurement by holography. In: Symposion on the engineering uses of holography (E. R. Robertson, ed.), p. 307–331. Cambridge: University Press 1970.

    Google Scholar 

  • Tonndorf, J., Khanna, S. M.: Displacement pattern of the basilar membrane: a comparison of experimental data. Science160, 1139–1140 (1968).

    Article  CAS  PubMed  Google Scholar 

  • Whitfield, I. C.: Coding in the auditory nervous system. Nature (Lond.)213, 756–760 (1967).

    Article  CAS  Google Scholar 

  • Wiener, F. M.: On the relation between the sound fields radiated and diffracted by plane obstacles. J. acoust. Soc. Amer.23, 697–700 (1951).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelsen, A. The physiology of the locust ear. Z. Vergl. Physiol. 71, 63–101 (1971). https://doi.org/10.1007/BF01245155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245155

Keywords