Skip to main content
Log in

Structural abnormalities in freeze-fractured sciatic nerve fibres of diabetic mice

  • Published:
Journal of Neurocytology

Summary

Nodal and paranodal regions of myelinated sciatic nerve fibres from diabetic (db/db) mice were examined in freeze fracture replicas. In some fibres, the axolemma was found to display abnormalities in the paranodal region. These include shallow, undifferentiated junctional indentations, thinning of the indentations with widening of the non-junctional grooves between them, particle clusters within the non-junctional grooves, and patches in which axolemmal E-face particles are distributed randomly rather than in the form of linear strings within grooves. Nodal structure, in contrast, is hardly affected. Nodal E-face and P-face particle densities indb/db axons are not significantly different from those in age-matched controls, although we found a few examples in which the E-face density fell slightly below the normal range. Occasional fibres showing evidence of paranodal or segmental demyelination were also seen. The results support paranodal pathology as a potential basis for reduced nerve conduction velocity in diabetic nerves but provide no evidence for significant changes in nodal structure or in nodal Na channel density in sciatic nerve fibres of thedb/db mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Black, J. A., Waxman, S. G. &Hildebrand, C. (1984) Membrane specialization and axo-glial association in the rat retinal nerve fibre layer: freeze-fracture observations.Journal of Neurocytology 13, 417–30.

    PubMed  Google Scholar 

  • Black, J. A., Waxman, S. G. &Smith, M. E. (1987) Macromolecular structure of axonal membrane during acute experimental allergic encephalomyelitis in rat and guinea pig spinal cord.Journal of Neuropathology and Experimental Neurology 46, 167–84.

    PubMed  Google Scholar 

  • Blank, W. F., Bunge, M. B. &Bunge, R. P. (1974) The sensitivity of the myelin sheath, particularly the Schwann cell-axolemmal junction, to lowered calcium levels in cultured sensory ganglia.Brain Research 67, 503–18.

    PubMed  Google Scholar 

  • Bostock, H. &Sears, T. A. (1978) The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination.Journal of Physiology 280, 273–301.

    PubMed  Google Scholar 

  • Brismar, T., Anders, A. &Sima, A. A. F. (1981) Changes in nodal function in nerve fibres of the spontaneously diabetic BB-Wistar rat: potential clamp analysis.Acta Physiologica Scandinavica 113, 499–506.

    PubMed  Google Scholar 

  • Dyck, P. J., Lambert, E. H., Windebank, A. J., Lois, A. A., Sparks, M. F., Karnes, J., Sherman, W. R., Hallcher, L. M., Low, P. A. &Service, J. F. (1981) Acute hyperosmolar hyperglycemia causes axonal shrinkage and reduced nerve conduction velocity.Experimental Neurology 71, 507–14.

    PubMed  Google Scholar 

  • Greene, D. A., Chakravarti, S., Lattimer, S. A. &Sima, A. A. F. (1987) Role of sorbitol accumulation and myoinositol depletion in paranodal swelling of large myelinated nerve fibres in the insulin-deficient spontaneous diabetic bio-breeding rat.Journal of Clinical Investigation 79, 1479–85.

    PubMed  Google Scholar 

  • Greene, D. A. &Lattimer, S. A. (1984) Action of sorbinil in diabetic peripheral nerve. Relationship of polyol (sorbitol) pathway inhibition to a myo-inositol-mediated defect in sodium-potassium ATPase activity.Diabetes 33, 712–16.

    PubMed  Google Scholar 

  • Greene, D. A., Yagihashi, S., Lattimer, S. A. &Sima, A. A. F. (1984) Nerve Na+-K+ ATPase, conduction, and myo-inositol in the insulin-deficient BB rat.American Journal of Physiology 247, E534–9.

    PubMed  Google Scholar 

  • Hasegawa, M., Rosenbluth, J. &Ishise, J. (1988) Nodal and paranodal structural changes in mouse and rat optic nerve during Wallerian degeneration.Brain Research 452, 345–57.

    PubMed  Google Scholar 

  • Hirano, A. &Dembitzer, H. M. (1982) Further studies on the transverse bands.Journal of Neurocytology 11, 851–6.

    Google Scholar 

  • Ishise, J. &Rosenbluth, J. (1986) Nodal and paranodal structural changes in frog optic nerve during early Wallerian degeneration.Journal of Neurocytology 15, 657–70.

    Google Scholar 

  • LaFontaine, S., Rasminsky, M., Saida, T. &Sumner, A. (1982) Conduction block in rat myelinated fibres following acute exposure to anti-galactocerebroside serum.Journal of Physiology 323, 287–306.

    PubMed  Google Scholar 

  • Moore, S. A., Peterson, R. G., Felten, D. L., Cartwright, T. R. &O'Connor, B. L. (1980) Reduced sensory and motor conduction velocity in 25-week-old diabetic [C57BL/Ks(db/db)] mice.Experimental Neurology 70, 548–55.

    PubMed  Google Scholar 

  • Norido, F., Canella, R., Zanoni, R. &Gorio, A. (1984) Development of diabetic neuropathy in the C57BL/Ks(db/db) mouse and its treatment with gangliosides.Experimental Neurology 83, 221–32.

    PubMed  Google Scholar 

  • Robertson, D. M. &Sima, A. A. F. (1980) Diabetic neuropathy in the mutant mouse [C57BL/Ks(db/db)], a morphometric study.Diabetes 29, 60–7.

    PubMed  Google Scholar 

  • Rosenbluth, J. (1976) Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain.Journal of Neurocytology 5, 731–45.

    PubMed  Google Scholar 

  • Rosenbluth, J. (1981) Freeze-fracture approaches to ionophore localization in normal and myelin-deficient nerves. InDemyelinating Disease: Basic and Clinical Electrophysiology (edited byWaxman, S. G. &Ritchie, J. M.),Advances in Neurology 31, 391–418. New York: Raven Press.

    Google Scholar 

  • Rosenbluth, J. (1983) Intramembranous particle distribution in nerve fibre membranes.Experientia 39, 953–63.

    PubMed  Google Scholar 

  • Rosenbluth, J. (1984) Membranous specializations at the nodes of Ranvier and paranodal and juxtaparanodal regions of myelinated central and peripheral nerve fibers. InThe node of Ranvier (edited byZagoren, J. C. &Fedoroff, S.), pp. 31–67. Orlando: Academic Press.

    Google Scholar 

  • Rosenbluth, J. (1988) Role of glial cells in the differentiation and function of myelinated axons.International Journal of Developmental Neuroscience 6, 3–24.

    PubMed  Google Scholar 

  • Rosenbluth, J., Sumner, A. J. &Saida, T. (1981) Dedifferentiation of the axolemma associated with demyelination. InProceedings of the 39th EMSA Meeting (edited byBailey, G. W.), pp. 496–7. Baton Rouge: Claitor's.

    Google Scholar 

  • Rosenbluth, J., Tao-Cheng, J.-H. &Blakemore, W. F. (1985) Dependence of axolemmal differentiation on contact with glial cells in chronically demyelinated lesions of the cat spinal cord.Brain Research 358, 287–302.

    PubMed  Google Scholar 

  • Schiavinato, A., Morandin, A. &Gorio, A. (1985) Quantitative analysis of myelin and axolemma particle distribution in C57BL/Ks diabetic mice and the effects of ganglioside treatment.Journal of the Neurological Sciences 69, 301–17.

    PubMed  Google Scholar 

  • Sharma, A. K., Thomas, P. K., Gabriel, G., Stolinski, C., Dockery, P. &Hollins, G. W. (1983) Peripheral nerve abnormalities in the diabetic mutant mouse.Diabetes 32, 1152–61.

    PubMed  Google Scholar 

  • Sima, A. A. F. &Brismar, T. (1985) Reversible diabetic nerve dysfunction: structural correlates to electrophysiological abnormalities.Annals of Neurology 18, 21–9.

    PubMed  Google Scholar 

  • Sima, A. A. F., Lattimer, S. A., Yagihashi, S. &Greene, D. A. (1986) Axo-glial dysjunction, a novel structural lesion that accounts for poorly reversible slowing of nerve conduction in the spontaneous diabetic Bio-Breeding rat.Journal of Clinical Investigation 77, 474–84.

    PubMed  Google Scholar 

  • Sima, A. A. F. &Robertson, D. M. (1978) Peripheral neuropathy in mutant diabetic mouse [C57BL/Ks(db/db)].Acta Neuropathologica (Berlin) 41, 85–9.

    Google Scholar 

  • Smith, K. J. &McDonald, W. I. (1982) Spontaneous and evoked electrical discharges from a central demyelinating lesion.Journal of the Neurological Sciences 55, 39–47.

    PubMed  Google Scholar 

  • Tao-Cheng, J.-H. &Rosenbluth, J. (1982) Development of nodal and paranodal membrane specializations in amphibian peripheral nerves.Developmental Brain Research 3, 577–94.

    Google Scholar 

  • Tao-Cheng, J.-H. &Rosenbluth, J. (1984) Extranodal particle accumulations in the axolemma of myelinated frog optic axons.Brain Research 308, 289–300.

    PubMed  Google Scholar 

  • Thomas, P. K. &Elliasson, S. G. (1984) Diabetic neuropathy. InPeripheral Neuropathy (edited byDyck, P. J., Thomas, P. K., Lambert, E. H. &Bunge, R.), 2nd Edition, pp. 1773–810. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Thomas, P. K. &Lascelles, R. G. (1966) The pathology of diabetic neuropathy.Quarterly Journal of Medicine 35, 489–509.

    Google Scholar 

  • Waxman, S. G. &Ritchie, J. M. (1985) Organization of ion channels in the myelinated nerve fibre.Science 228, 1502–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirasaki, N., Rosenbluth, J. Structural abnormalities in freeze-fractured sciatic nerve fibres of diabetic mice. J Neurocytol 20, 573–584 (1991). https://doi.org/10.1007/BF01215265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01215265

Keywords

Navigation