Skip to main content
Log in

Motion estimation methods and noisy phenomena

  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In an infrared surveillance system (which must detect remote sources and thus has a very low resolution) in an aerospace environment, the estimation of the cloudy sky velocity should lower the false alarm rate in discriminating the motion between various moving shapes by means of a background velocity map. The optical flow constraint equation, based on a Taylor expansion of the intensity function, is often used to estimate the motion for each pixel. One of the main problems in motion estimation is that, for one pixel, the real velocity cannot be found because of the aperture problem. Another kinematic estimation method is based on a matched filter [generalized Hough transform (GHT)]: it gives a global velocity estimation for a set of pixels. On the one hand we obtain a local velocity estimation for each pixel with little credibility because the optical flow is so sensitivity to noise; on the other hand, we obtain a robust global kinematic estimation, the same for all selected pixels. This paper aims to adapt and improve the GHT in our typical application in which one must discern the global movement of objects (clouds), whatever their form may be (clouds with hazy edges or distorted shapes or even clouds that have very little structure). We propose an improvement of the GHT algorithm by segmentation images with polar constraints on spatial gradients. One pixel, at timet, is matched with another one at timet + ΔT, only if the direction and modulus of the gradient are similar. This technique, which is very efficient, sharpens the peak and improves the motion resolution. Each of these estimations is calculated within windows belonging to the image, these windows being selected by means of an entropy criterion. The kinematic vector is computed accurately by means of the optical flow constraint equation applied on the displaced window. We showed that, for small displacements, the optical flow constraint equation sharpens the results of the GHT. Thus a semi-dense velocity field is obtained for cloud edges. A velocity map computed on real sequences with these methods is shown. In this way, a kinematic parameter discriminates between a target and the cloudy background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballard D.H (1981) Generalizing the Hough transform to detect arbitrary shapes. Patt Recogn 13:111

    Google Scholar 

  • Bergholm F, Carlsson S (1991) A theory of optical flow. Graphic Models Image Processing 53:171–188

    Google Scholar 

  • Bouthemy P (1985) Estimation of edge motion based on local modeling. SPIE Comput Vision Robots 595:162–169

    Google Scholar 

  • Bouthemy P (1986) A new scheme for motion computation along contours in image sequences. 2nd Image Symposium, Nice

  • Collet C, Quinquis A, Boucher J.M (1992) Cloudy sky velocity estimation based on optical flow estimation leading with an entropy criterion. International Conference on Pattern Recognition, 11, pp 160–163

    Google Scholar 

  • Gonzalez R.C (1987) Digital image processing, 2nd edn, Addison Wesley

  • Nagel H.H (1983) Displacement vectors derived from second order intensity variations in image sequences. Comput Vision Graph Image Processing 21:85–117

    Google Scholar 

  • Nagel H.H (1986) An investigation of smothness constraint for the estimation of displacement vector fields from image sequence. IEEE Trans Patt Anal Machine Intell 8:565–593

    Google Scholar 

  • Nagel H.H (1987) On the estimation of the optical flow. Artificial Intell 33:299–324

    Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernetics 9:62–66

    Google Scholar 

  • Prazdny K (1983) On the information in optical flows. Comput Vision Graph Image Processing 22:239–259

    Google Scholar 

  • Rajala S.A, Riddle A.N, Snyder W.E (1983 Application of the one-dimensional Fourier transform for tracking moving objects in noisy environments. Comput Vision Graph Image Processing 21:280–293

    Google Scholar 

  • Sklansky J (1978) On the Hough technique for curve detection. IEEE Trans Comput 27:923

    Google Scholar 

  • Vega-Riveros J.F., Jabbour K. (1989) Review of motion analysis techniques. IEEE Proceedings 136:6:397–404

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collet, C., Quinquis, A. Motion estimation methods and noisy phenomena. Machine Vis. Apps. 7, 247–258 (1994). https://doi.org/10.1007/BF01213415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213415

Key words

Navigation