Skip to main content
Log in

Equivariant constrained symplectic integration

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

We use recent results on symplectic integration of Hamiltonian systems with constraints to construct symplectic integrators on cotangent bundles of manifolds by embedding the manifold in a linear space. We also prove that these methods are equivariant under cotangent lifts of a symmetry group acting linearly on the ambient space and consequently preserve the corresponding momentum. These results provide an elementary construction of symplectic integrators for Lie-Poisson systems and other Hamiltonian systems with symmetry. The methods are illustrated on the free rigid body, the heavy top, and the double spherical pendulum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, R., and Marsden, J.,Foundations of Mechanics, 2nd edition, Benjamin/Cummings, Reading, 1978.

  2. Andersen, H. C., Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations,J. Comput. Phys. 52 (1983), 24–34.

    Google Scholar 

  3. Channell, P. J., and Scovel, J. C., Integrators for Lie—Poisson dynamical systems,Physica D 50 (1991), 80–88.

    Google Scholar 

  4. Cooper, G. J., Stability of Runge—Kutta methods for trajectory problems,IMA J. Numer. Anal. 7 (1987), 1–13.

    Google Scholar 

  5. Feng, K., and Ge, Z., On the approximation of linear H-systems,J. Comput. Math. 6 (1988), 88–97.

    Google Scholar 

  6. Ge, Z., and Marsden, J., Lie—Poisson Hamilton—Jacobi theory and Lie—Poisson integrators,Phys. Lett. A 133 (1988), 135–139.

    Google Scholar 

  7. Ge, Z., Equivariant symplectic difference schemes and generating functions,Physica D 49 (1991), 376–386.

    Google Scholar 

  8. Ge, Z., Generating functions, Hamilton-Jacobi equations and symplectic groupoids on Poisson manifolds,Indiana Univ. Math. J. 39(3) (1990), 859–876.

    Google Scholar 

  9. Guillemin, V., and Sternberg, S.,Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.

    Google Scholar 

  10. Jay, L., Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems, to appear inSIAM J. Numer. Anal. (1995).

  11. Leimkuhler, B. J., and Skeel, R. D., Symplectic numerical integration in constrained Hamiltonian systems,J. Comput. Phys. 112:1 (1994), 117–125.

    Google Scholar 

  12. Lewis, D., and Simo, J. C., Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups,J. Nonlinear Sci. 4 (1994), 253–299.

    Google Scholar 

  13. Lewis, D., and Simo, J. C., Conserving algorithms for then dimensional rigid body, preprint, 1994.

  14. Li, S., personal communication.

  15. Marsden, J.,Lectures on Mechanics, London Mathematics Society Lecture Note Series 174, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  16. Marsden, J., and Ratiu, T., Reduction of Poisson manifolds,Lett. Math. Phys. 11 (1986), 161–169.

    Google Scholar 

  17. Marsden, J., and Ratiu, T., An introduction to mechanics and symmetry, preprint, 1992.

  18. McLachlan, R. I., Explicit Lie-Poisson integration and the Euler equations,Phys. Rev. Lett. 71 (1993), 3043–3046.

    Google Scholar 

  19. McLachlan, R. I., On the numerical integration of ordinary differential equations by symmetric composition methods,SIAM J. Sci. Comput. 16 (1995), 151–168.

    Google Scholar 

  20. Moser, J., and Veselov, A. P., Discrete versions of some classical integrable systems and factorization of matrix polynomials,Commun. Math. Phys. 139 (1991), 217–243.

    Google Scholar 

  21. Ratiu, T., The motion of the free n-dimensional rigid body,Indiana Univ. Math. J. 29:4 (1980), 609–629.

    Google Scholar 

  22. Reich, S., Symplectic integration of constrained Hamiltonian systems by Runge-Kutta methods, Tech. Report 93-13, Univ. British Columbia, 1993.

  23. Reich, S., Numerical integration of the generalized Euler equations, Tech. Report 93-20, Univ. British Columbia, 1993.

  24. Reich, S., Momentum preserving symplectic integrators,Physica D 76 (1994), 375–383.

    Google Scholar 

  25. Sanz-Serna, J. M., Runge-Kutta schemes for Hamiltonian systems,BIT 28 (1988), 877–883.

    Google Scholar 

  26. Sanz-Serna, J. M., Symplectic integrators for Hamiltonian problems: an overview,Acta Numerica 1 (1992), 243–286.

    Google Scholar 

  27. Scovel, J. C., Symplectic numerical integration of Hamiltonian systems, inThe Geometry of Hamiltonian Systems, ed. T. Ratiu, MSRI Publ. 22, 463–496, Springer-Verlag, New York, 1991.

    Google Scholar 

  28. Scovel, C., and Weinstein, A., finite dimensional Lie-Poisson approximations to Vlasov-Poisson equations,Commun. Pure Appl. Math. 47:5 (1994), 683–709.

    Google Scholar 

  29. Suzuki, M., Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations,Phys. Lett. A 146 (1990), 319–323.

    Google Scholar 

  30. Symon, R. K.,Mechanics, Addison-Wesley, Reading, MA, 1971.

    Google Scholar 

  31. Varadarajan, V. S.,Lie Groups, Lie Algebras, and Their Representations, Springer-Verlag, New York, 1974.

    Google Scholar 

  32. Yoshida, H., Construction of higher order symplectic integrators,Phys. Lett. A 150 (1990), 262–268.

    Google Scholar 

  33. Yoshida, H., Recent progress in the theory and application of symplectic integrators,Cel. Mech. Dyn. Astr. 56 (1993), 27–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Jerrold Marsden

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLachlan, R.I., Scovel, C. Equivariant constrained symplectic integration. J Nonlinear Sci 5, 233–256 (1995). https://doi.org/10.1007/BF01212956

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212956

Key words

Navigation