Skip to main content
Log in

Foliar exchange of mercury vapor: Evidence for a compensation point

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Historical studies for crop and weed species documented elemental Hg vapor (Hg°) deposition to foliage, but they used Hg° concentrations that were orders of magnitude higher than levels now known to occur under background conditions, possibly creating artificially high gradients between the atmosphere and landscape surfaces. Measurements of Hg° exchange with white oak (Quercus alba L.), red maple (Acer rubrum L.), Norway spruce (Picea abies L.), and yellow-poplar (Liriodendron tulipifera L.) foliage were conducted in an open gas exchange system that allows for simultaneous measurements of CO2, H2O and Hg° exchange under controlled environmental conditions. When Hg° concentrations were held at 0.5 to 1.5 ng m−3, red maple (Acer rubrum L.), Norway spruce (Picea abies L.), yellow-poplar (Liriodendron tulipifera L.), and white oak (Quercus alba L.) foliage exhibited mean Hg° emissions of 5.5, 1.7, 2.7, and 5.3 ng m−2 h−1, respectively. At Hg° concentrations between 9 and 20 ng m−3 little net exchange of Hg° was observed. However at concentrations between 50 and 70 ng m−3 the Hg° was deposited to foliage at rates between 22 and 38 ng m−2 h−1. These data suggest that dry foliar surfaces in terrestrial forest landscapes may be a dynamic exchange surface that can function as a source or sink dependent on the magnitude of current Hg° concentrations. These data provide evidence of species-specific compensation concentrations (or compensation points) for Hg° deposition to seedling foliage in the 10–25 ng m−3 range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beauford, W., Barber, J., Barringer, A.R.: 1977,Physiol. Plant. 39, 261–265.

    Google Scholar 

  • Bloom, N., Fitzgerald, W.F.: 1988,Anal. Chem. Acta. 208, 151–161.

    Google Scholar 

  • Browne, C.L. and Fang, S.C.: 1978.Plant Physiol. 61, 430–433.

    Google Scholar 

  • Dolar, S.G., Keeney, D.R., Chesters, G.: 1971,Environ. Letters 1, 191–198.

    Google Scholar 

  • Du, S. and Fang, S.C.: 1983,Environ. Exp. Bot. 23, 347–353.

    Google Scholar 

  • Du, S. and Fang, S.C.: 1982.Environ. Exp. Bot. 22, 437–443.

    Google Scholar 

  • Farquhar, G.D. and Firth, P.M., Wetselaar, R. et al.: 1980,Plant Physiol. 66, 710–714.

    Google Scholar 

  • Fitzgerald, W.F. and Gill, G.A.: 1979,Anal. Chem. 51, 1714–1720.

    Google Scholar 

  • Hanson, P.J. and Lindberg, S.E.: 1991,Atmospheric Environment 25A, 1615–1634.

    Google Scholar 

  • Hanson, P.J., Rott, K., Taylor, G.E.Jr., et al.: 1989,Atmospheric Environ. 23, 1783–1794.

    Google Scholar 

  • Johansson, C.: 1987.Tellus 39B, 426–438.

    Google Scholar 

  • Kim, K.-H. and Lindberg, S.E.: 1994,J. Geophys. Res. 99(D3), 5379–5384.

    Google Scholar 

  • Kothny, E.L., 1973.Trace elements in the environment. p. 48–80.

  • Kozuchowski, J. and Johnson, D.L.: 1978,Nature 274, 468–469.

    Google Scholar 

  • Lindberg, S.E., Meyers, T.P., Taylor, G.E.Jr., et al.: 1992.J. Geophys. Res. 97(D2), 2519–2528.

    Google Scholar 

  • Lindberg, S.E., Jackson, D.R., Huckabee, J.W., et al.: 1979,J. Environ. Qual. 8, 572–578.

    Google Scholar 

  • Lindqvist, O.: 1985,Tellus 37B, 136–159.

    Google Scholar 

  • Parkhurst, D.F.: 1994,New Phytol. 126, 449–479.

    Google Scholar 

  • Rasmussen, P.E., Mierle, G., Nriagu, J.O.: 1991,Water Air Soil Pollut. 56, 379–390.

    Google Scholar 

  • Schroeder, W.H., Munthe, J., Lindqvist, O.: 1989,Water Air Soil Pollut. 48, 337–347.

    Google Scholar 

  • Siegel, S.M., Puemer, N.J., Speitel, T.W.: 1974,Physiol. Plant. 32, 174–176.

    Google Scholar 

  • Siegel, S.M. and Siegel, B.Z.: 1988,Water Air Soil Pollut. 40, 443–448.

    Google Scholar 

  • Siegel, S.M., Siegel, B.Z., Okasako, J.: 1981,Water Air Soil Pollut. 15, 371–374.

    Google Scholar 

  • Swain, E.B., Engstrom, D.R., Brigham, M.E., et al.: 1992,Science 257, 784–787.

    Google Scholar 

  • Taylor, G.E.Jr. and Tingey, D.T.: 1983,Plant Physiol. 72, 237–244.

    Google Scholar 

  • Taylor, G.E. Jr., Tingey, D.T., Ratsch H.: 1982,Oecologia 53, 179–186.

    Google Scholar 

  • Taylor, G.E. Jr., Hanson, P.J. Baldocchi, D.D.: 1988,Assessment of Crop Loss From Air Pollutants. pp. 227–257

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, P.J., Lindberg, S.E., Tabberer, T.A. et al. Foliar exchange of mercury vapor: Evidence for a compensation point. Water Air Soil Pollut 80, 373–382 (1995). https://doi.org/10.1007/BF01189687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01189687

Keywords

Navigation