Skip to main content
Log in

Flutter analysis using transversality theory

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A new method of calculating the flutter boundaries of undamped aeroelastic “typical section” models is presented. The method is an application of the weak transversality theorem used in catastrophe theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has a smooth dependence on the system's parameters. As these parameters change with operating conditions, certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in locating such flutter boundaries using this criterion:at a flutter boundary, the characteristic polynomial does not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries of structures with two degrees of freedom are presented, and extension to multi degree of freedom systems is indicated. The formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers. Substantial savings in computation resources are possible when this non-iterative method is used, compared to existing frequency domain methods which are essentially iterative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bairstow, L.: Theory of wing flutter. British A. R. C., R & M 1041. London: HMSO 1925.

    Google Scholar 

  2. Frazer, R. A., Duncan, W. J.: The flutter of aeroplane wings. British A. R. C., R & M 1155, London: HMSO 1928.

    Google Scholar 

  3. Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. NACA Report496 (1935).

  4. Johnson, W.: Helicopter theory. Princeton: University Press 1980.

    Google Scholar 

  5. Whitehead, D. S.: Force and moment coefficients for vibrating airfoils in cascades. BritishA. R. C., R & M 3254. London: HMSO 1960.

    Google Scholar 

  6. Whitehead, D. S.: Effect of mistuning on the vibration of turbomachine blades induced by wakes. J. Mech. Eng. Sci.8, 15–21 (1966).

    Google Scholar 

  7. Kaza, K. R. V., Kielb, R. E.: Flutter and response of a mistuned cascade in incompressible flow. AIAA J.20, 1120–1127 (1982).

    Google Scholar 

  8. Dugundji, J., Bundas, J.: Flutter and forced response of mistuned rotors using standing wave analysis. AIAA J.22, 1652–1661 (1984).

    Google Scholar 

  9. Bakhle, M. A., Reddy, T. S. R., Keith, T. G.: Time domain flutter analysis of cascades using a full-potential solver. AIAA J.30, 163–170 (1992).

    Google Scholar 

  10. Poincaré, H.: Thèse. Sur les propriétés des fonctions définies par les équations aux différences partielles, 1879, ∄urvres de Henri Poincaré, Tome I. Paris: Gauthier-Villars 1951.

    Google Scholar 

  11. Andronov, A. A., Pontryagin, L. S.: Systemes grossiers (Coarse systems). Dokl. Akad. Nauk SSSR14, 247–251 (1937).

    Google Scholar 

  12. Thom, R.: Structural stability and morphogenesis, reprint. Boston: Addison Wesley 1989.

    Google Scholar 

  13. Arnol'd, V. I.: Catastrophe theory. Berlin, Heidelberg, New York: Springer 1983.

    Google Scholar 

  14. Arnol'd, V. I.: Lectures on bifurcations in versal families. Russian Math. Surveys27, 54–123 (1972).

    Google Scholar 

  15. Arnol'd, V. I.: On matrices depending on parameters. Russian Math. Surveys26, 29–43 (1971).

    Google Scholar 

  16. Thom, R., Levin, H.: Singularities of differentiable mappings. Bonn Math. Schr.6 (1959). (reprinted in: Lecture Notes in Mathematics, vol.192. Berlin, Heidelberg, New York: Springer 1971).

  17. Abraham, R., Robbin, J.: Transversal mappings and flows. New York: Benjamin 1967.

    Google Scholar 

  18. Brieskorn, E., Knörrer, H.: Plance algebraic curves. Boston: Birkhäuser 1986.

    Google Scholar 

  19. Zeeman, E. C.: The umbilic bracelet and the double cusp catastrophe. In: Structural stability, the theory of catastrophes, and its applications in the sciences. Lecture Notes in Mathematics, vol525, pp. 328–366. Berlin, Heidelberg, New York: Springer 1976.

    Google Scholar 

  20. Poston, T., Stewart, I.: Catastrophe theory and its applications. London: Pitman 1978.

    Google Scholar 

  21. Bisplinghoff, R. L., Ashley, H., Principles of aeroelasticity. New York: Dover 1962.

    Google Scholar 

  22. Dowell, E. H., Curtiss, H. C., Scanlan, R. H., Sisto, F.: A modern course in aeroelasticity. Rockville: Sijthoff & Noordhoff 1978.

    Google Scholar 

  23. Milnor, J.: Singular points of complex hypersurfaces. Ann. Math. Studies61. Princeton: University Press 1968.

    Google Scholar 

  24. Arnol'd, V. I., Gusein-Zade, S. M., Varchenko, A. N.: Singularities of differentiable mappings, vol II. Monodromy and asymptotics of integrals. Boston: Birkhäuser 1985.

    Google Scholar 

  25. Bolotin, V. V.: Nonconservative problems of elastic stability. Oxford: Pergamon 1963.

    Google Scholar 

  26. Duncan, W. J., Biot, M. A., Johnson, D. C., Bishop, R. E. D.: Receptances in mechanical systems. J. Roy. Aeronaut. Soc.58, 305 (1954).

    Google Scholar 

  27. Duncan, W. J.: Mechanical admittances and their applications to oscillation problems. British A. R. C., R & M 2000. London: HMSO 1946.

    Google Scholar 

  28. Bishop, R. E. D., Johnson, D. C.: The mechanics of vibration. Cambridge: University Press 1960.

    Google Scholar 

  29. Afolabi, D.: Sylvester's eliminant and stability criteria for gyroscopic systems. J. Sound Vib. (in press).

  30. Turnbull, H. W.: Theory of equations. London: Oliver and Boyd 1939.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afolabi, D. Flutter analysis using transversality theory. Acta Mechanica 103, 1–15 (1994). https://doi.org/10.1007/BF01180214

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01180214

Keywords

Navigation