Skip to main content
Log in

Multi-component convection-diffusion with internal heating or cooling

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The onset of convection in a fluid layer with an internal heat source is studied. In addition to the temperature field there are present two different, dissolved salt fields. Thus, this paper investigated the effect of an internal heat source on the problem of triply-diffusive convection. The effect of the boundary conditions is found to be important. For two surfaces free of tangential stress a disconnected oscillatory neutral curve can be found which has the same minimum as the stationary convection one. Thus the possibility of simultaneous initiation of convection by two different mechanisms, but with two different aspect ratios, is found. It is also found that the above effect is prsent when the lower surface is fixed while the upper surface is free of tangential stress, even if the container of the fluid is of finite horizontal extent. When both surfaces are fixed we have not observed the twin minima effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C. F., Su, T. F.: Effect of surface tension on the onset of convection in a double-diffusive layer. Phys. FluidsA 4, 2360–2367 (1992).

    Google Scholar 

  2. Corriel, S. R., McFadden, G. B., Voorhees, P. W., Sekerka, R. F.: Stability of a planar interface solidification of a multicomponent system. J. Crystal Growth82, 300–313 (1987).

    Google Scholar 

  3. Drazin, P. G., Reid, W. H.: Hydrodynamic stability. Cambridge: Cambridge University Press 1981.

    Google Scholar 

  4. Guo, J. L., Kaloni, P. N.: Nonlinear stability problem of a rotating double-diffusive porous layer. J. Math. Anal. Appl.190, 373–390 (1995).

    Google Scholar 

  5. Guo, J. L., Kaloni, P. N.: Double-diffusive convection in a porous medium, nonlinear stability, and the Brinkman effect. Stud. Appl. Math.94, 341–358 (1995).

    Google Scholar 

  6. Guo, J. L., Qin, Y., Kaloni, P. N.: Nonlinear stability problem of a rotating doubly diffusive fluid layer. Int. J. Eng. Sci.104, 173–200 (1995).

    Google Scholar 

  7. Hutter, K., Strughan, B.: Penetrative convection in thawing subsea permafrost. Cont. Mech. Thermodyn.9, 259–272 (1997).

    Google Scholar 

  8. Kaloni, P. N., Guo, J. L.: Steady nonlinear double-diffusive convection in a porous medium based upon the Brinkman-Forchheimer model. J. Math. Anal. Appl.204, 138–155 (1996).

    Google Scholar 

  9. Lopez, A. R., Romero, L. A., Pearlstein, A. J.: Effect of rigid boundaries on the onset of convective instability in a triply diffusive fluid layer. Phys. FluidsA 2, 897–902 (1990).

    Google Scholar 

  10. Matthews, P. C.: A model for the onset of penetrative covection. J. Fluid Mech.188, 571–583 (1988).

    Google Scholar 

  11. McKenzie, D. P., Roberts, J. M., Weiss, N. O.: Convection in the Earth' mantle: towards a numerical solution. J. Fluid Mech.62, 465–538 (1974).

    Google Scholar 

  12. Mielke, A.: Mathematical analysis of sideband instabilities with application to Rayleigh-Bénard convection. J. Nonlin. Sci.7, 57–99 (1997).

    Google Scholar 

  13. Moroz, I. M.: Multiple instabilities in a triply diffusive system. Stud. Appl. Math.80, 137–164 (1989).

    Google Scholar 

  14. Mulone, G.: On the nonlinear stability of a fluid layer of a mixture heated and salted from below. Cont. Meth. Thermodyn.6, 161–184 (1994).

    Google Scholar 

  15. Noulty, R. A., Leaist, D. G.: Quarternary diffusion in aqueous KCl−K2PO4−H3PO4 mixtures. J. Phys. Chem.91, 1655–1658 (1987).

    Google Scholar 

  16. Payne, L. E., Song, J. C., Straughan, B.: Double diffusive porous penetrative convection-thawing subsea permaforst. Int. J. Eng. Sci.26, 797–809 (1988).

    Google Scholar 

  17. Pearlstein, A. J., Harris, R. M., Terrones, G.: The onset of convective instability in a triply diffusive fluid layer. J. Fluid Mech.202, 443–465 (1989).

    Google Scholar 

  18. Roberts, P. H.: Convection in horizontal layers with internal heat generation. Theory J. Fluid Mech.30, 33–49 (1967).

    Google Scholar 

  19. Rosenblat, S., Homsy, G. M., Davis, S. H.: Nonlinear Marangoni convection in bounded layers. Part 2. Rectangular cylindrical containers. J. Fluid Mech.120, 123–138 (1982).

    Google Scholar 

  20. Straughan, B.: The energy method, stability and nonlinear convection. Springer Ser. in Appl. Math. Sci. (1992).

  21. Straughan, B.: Mathematical aspects of penetrative convection. Harlow: Longman 1993.

    Google Scholar 

  22. Straughan, B., Walker, D. W.: Anisotropic porous penetrative convection. Proc R. Soc. London Ser.A 452, 97–115 (1966).

    Google Scholar 

  23. Straughan, B., Walker, D. W.: Multi-component convection-diffusion and penetrative convection. Fluid Dyn. Res.19, 77–89 (1997).

    Google Scholar 

  24. Tracey, J.: Multi-component convection-diffusion in a porous medium. Cont. Mech. Thermodyn.8, 361–381 (1996).

    Google Scholar 

  25. Tracey, J.: Stability analyses of multi-component convection-diffusion problems. Ph.D. Thesis, University of Glasgow 1997.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straughan, B., Tracey, J. Multi-component convection-diffusion with internal heating or cooling. Acta Mechanica 133, 219–238 (1999). https://doi.org/10.1007/BF01179019

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01179019

Keywords