Skip to main content
Log in

On the theory of stress-assisted diffusion, I

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A recently developed stress-assisted diffusion theory is further examined in terms of its physical appropriateness and mathematical foundations. A derivation of the basic equations under quite general assumptions is provided, a discussion of the physical interpretation and measurement of the phenomenological constants is given, and solutions to typical boundary value problems are obtained. The relevance of the theory to modeling the anelastic and elasto-diffusive phenomena first noted by Gorsky and later discussed by others is also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cottrel, A. H.: Effect of solute atoms on the behavior of dislocations, in: Report of a Conference on Strength of Solids, Physical Society, London, 30–38 (1948).

  2. Van Leeuwen, H. P.: The kinetics of hydrogen embrittlement, a quantitative diffusion model. Engineering Fracture Mechanics6, 141–161 (1974).

    Google Scholar 

  3. Oriani, R. A.: Hydrogen in metals, in: Fundamentals of stress corosion cracking, Conference at Ohio State University, NACE, 32–50 (1969).

  4. Aifantis, E. C., Gerberich, W. W.: Gaseous diffusion in a stressed thermoelastic solid, Part I: The thermomechanical formulation. Acta Mechanica.28, 1–24 (1977).

    Google Scholar 

  5. Aifantis, E. C., Gerberich, W. W.: Gaseous diffusion in a stressed thermoelastic solid, Part II: Thermodynamic structure and transport theory. Acta Mechanica23, 25–47 (1977).

    Google Scholar 

  6. Aifantis, E. C.: On the problem of diffusion in solids. Acta Mechanica37, 265–290 (1980).

    Google Scholar 

  7. Nowacki, W.: Certain problems of thermodiffusion in solids. Archives of Mechanics23, 731–755 (1971).

    Google Scholar 

  8. Bowen, R. M.: Theory of mixtures in: Continuum physics, Vol. 3, Ch. 1 (Eringen, A. C., ed.). New York: Academic Press 1976.

    Google Scholar 

  9. Gurtin, M. E.: On the linear theory of diffusion through an elastic solid. Proceedings of Conference on Environmental Degradation of Engineering Materials. Blacksburg, 107–120 (1977).

  10. Wilson, R. K., Aifantis, E. C.: A coupled diffusion-deformation theory. Developments in Mechanics10, 255–260 (1979).

    Google Scholar 

  11. Aifantis, E. C.: The mechanics of diffusion in solids. T & AM Report 440, UILU-ENG 80-6001 University of Illinois, Urbana, Illinois (1980).

    Google Scholar 

  12. Aifantis, E. C.: Continuum theories of diffusion and infiltration. Special Feature Article, Eng. Sci. Persp. (1980).

  13. Gorsky, W. S.: Theorie der elastischen Nachwirkung in ungeordneten Mischkristallen (Elastische Nachwirkung Zweiter Art). Phys. Z. Sowjetunion8, 457–471 (1935).

    Google Scholar 

  14. Zener, C.: Elasticity and anelasticity of metals. Chicago: University of Chicago Press 1948.

    Google Scholar 

  15. Alefeld, G., Volkl, J., Schaumann, G.: Elastic diffusion relaxation. Phys. Stat. Sol.37, 337–351 (1970).

    Google Scholar 

  16. Cermak, J.: Diffusion-elastic phenomena I. Theory of diffusion-induced elastic bending. Czech. J. Phys.B 23, 1355–1369 (1973).

    Google Scholar 

  17. Cermak, J., Kufudakis, A.: Diffusion-elastic phenomena II. Experiments Czech. J. Phys.B 23, 1370–1381 (1973).

    Google Scholar 

  18. Cermak, J.: Difference between absorption and desorption measurements in determining the diffusion characteristics. Roczniki Chemii Ann. Soc. Chim. Polonorum50, 1741–1748 (1976).

    Google Scholar 

  19. Kufudakis, A., Vlcek, M.: A modification of the deflection method for the study of diffusion-elastic phenomena in plated layers. Czech. J. Phys.B 26, 795–806 (1976).

    Google Scholar 

  20. Cermak, J., Kufudakis, A.: Diffusion-elastic phenomenon and diffusivity of hydrogen in nickel J. Less-Common Met.49, 309–322 (1976).

    Google Scholar 

  21. Cermak, J., Kufudakis, A., Gardavska G.: Diffusivity of hydrogen in platinum and the diffusion-elastic phenomenon. J. Less-Common Met.63, 1–8 (1979).

    Google Scholar 

  22. Nowick, A. S., Berry, B. S.: Anelastic relaxation in crystalline solids. New York: Academic Press 1972.

    Google Scholar 

  23. Bausch, R., Horner, H., Wagner, H.: Equilibrium density fluctuations and anelastic response in hydrogen-metal systems. J. Phys. C: Solid State Phys.8, 2559–2574 (1975).

    Google Scholar 

  24. Wagner, H.: Elastic interaction and phase transition in coherent metal-hydrogen alloys, in: Hydrogen in metals I: Basic properties (Alefeld, G., Volkl, J., eds.). Berlin-Heidelberg-New York: Springer 1978.

    Google Scholar 

  25. Carlson, D. E.: Linear thermoelasticity, in: Handbuch der Physik VIa/2, (Flügge, S., ed.). Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  26. Aifantis, E. C.: Lecture notes on stress-assisted diffusion, University of Minnesota, Spring 1981.

  27. Cahn, J. W.: On spinodal decomposition. Acta Metallurgica9, 795–801 (1961).

    Google Scholar 

  28. Peisl, H.: Lattice strains due to hydrogen in metals, in: Hydrogen in metals I: Basic properties (Alefeld, G., Volkl, J., eds.). Berlin-Heidelberg-New York: Springer 1978.

    Google Scholar 

  29. Aifantis, E. C., Gerberich, W. W.: Diffusion of a gas in a linear elastic solid. Acta Mechanica29, 169–184 (1978).

    Google Scholar 

  30. Liu, H. W.: Stress-corrosion cracking and the interaction between crack-tip stress field and solute atoms. J. Basic Eng., ASME,1970, 633–638 (1978).

    Google Scholar 

  31. Verhoeven, J. D.: Fundamentals of physical metallurgy. New York: J. Wiley 1975.

    Google Scholar 

  32. Shewmon, P. G.: Diffusion in solids. New York: Mc-Graw-Hill 1963.

    Google Scholar 

  33. Ells, C. E., Simpson, C. J.: Stress induced movement of hydrogen in zirconium alloys, in: Hydrogen in metals (Bernstein, I. M., Thompson, A. W., eds), pp. 345–360. Metals Park, Ohio: Amer. Soc. for Metals 1974.

    Google Scholar 

  34. Aifantis, E. C.: Comments on the calculation of the formation volume of vacancies in solids. Physical ReviewB 19 (1979).

  35. Varotsos, P., Aifantis, E. C.: Comments on the diffusion of a gas in a linear elastic solid. Acta Mechanica36, 129–133 (1980).

    Google Scholar 

  36. Unger, D. J., Aifantis, E. C.: On the theory of stress-assisted diffusion, II. Acta Mechanica 1983 (in press).

  37. Vegard, L.: Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys.1, 17–26 (1921).

    Google Scholar 

  38. Eshelby, J. D.: Distortion of a crystal by point imperfections. J. Appl. Phys.25, 255–261 (1954).

    Google Scholar 

  39. Aifantis, E. C., Beskos, D. E., Gerberich, W. W.: Diffusion in dislocation fields. Arch. Mechanics29, 723–740 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 Fugures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, R.K., Aifantis, E.C. On the theory of stress-assisted diffusion, I. Acta Mechanica 45, 273–296 (1982). https://doi.org/10.1007/BF01178044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178044

Keywords

Navigation