Skip to main content
Log in

Hyperelastic homogenized law for reinforced elastomer at finite strain with edge effects

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This paper investigates the static microstructural effects of periodic hyperelastic composites at finite strain. In the region far enough from the boundaries, the classic two-scale asymptotic homogenization process is used with the assumption of near incompressiblity of the elastomer. An application of this approach is given using periodically stratified composites. This homogenized evolution law is determined on a prescribed macroscopic deformation gradient. An iterative Newton-Raphson's scheme is used in solving this problem. The behavior of an elastomer/steel composite is analysed when elastomer and steel are respectively assumed to obey the Mooney-Rivlin and StVenant-Kirchhoff laws. We then study the validity of simplified formulations of this homogenized law obtained by approximating the local first Piola-Kirchhoff tensor with a Taylor-Young's expansion. In the case of neo-Hookean constituents, we show that the continuum homogenized model can be determined analytically. Since the classic asymptotic is not valid in the neighbourhood of the boundaries, we modify the micromechanical quantities in such a region by introducing a boundary layer expansion. In this way, the effects of respectively only one boundary and two boundaries are treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Amsterdam: North-Holland 1978.

    Google Scholar 

  2. Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. Lecture Notes in Physics, Vol. 127. Berlin Heidelberg New York: Springer 1980.

    Google Scholar 

  3. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal.20, 608–623 (1989).

    Google Scholar 

  4. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal.23, 1482–1518 (1992).

    Google Scholar 

  5. Suquet, P.: Plasticité et homogénéisation. Thèse de Doctorat d'Etat, Université Paris VI 1982.

  6. Suquet, P.: Elements of homogenization for inelastic solid mechanics. In: Homogenization techniques for composite media, pp. 193–278. Lecture Notes in Physics Vol. 272. Berlin Heidelberg New York: Springer 1987.

    Google Scholar 

  7. Aboudi, J.: Mechanics of composite materials — a unified micromechanical approach. Amsterdam: Elsevier 1991.

    Google Scholar 

  8. Lene, F.: Contribution à l'étude des matériaux composites et de leur endommagement. Thèse de Doctorat d'Etat, Université Paris VI 1984.

  9. Devries, F., Dumontet, H., Duvaut, G., Lene, F.: Homogenization and damage for composite structures. Int. J. Numer. Meth. Eng.27, 285–298 (1989).

    Google Scholar 

  10. Guedes, J. M.: Non linear computational model for composite material using homogenization. Ph. D. Thesis, University of Michigan, 1990.

  11. Guedes, J. M., Kikuchi, N.: Preprocessing and postprocessing for materials based on the homogenization method with adaptative finite element method. Comp. Meth. Appl. Mech. Eng.83, 143–198 (1991).

    Google Scholar 

  12. Pruchnicki, E.: Contribution à l'homogénéisation en phases linéaire et non linéaire application au renforcement des sols. Mémoire de thèse, Université de Lille, 1991.

  13. Jansson, S.: Homogenized non linear constitutive properties and local stress concentrations for composites with periodic internal structure. Int. J. Solids Struct.29, 2181–2200 (1992).

    Google Scholar 

  14. Ghosh, S., Lee, K., Moorthy, S.: Mutiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. Int. J. Solids Struct.32, 27–62 (1995).

    Google Scholar 

  15. Nemat-Nasser, S., Taya, M.: On effective moduli of an elastic body containing y periodically distributed voids. Q. Appl. Math.39, 43–59 (1981).

    Google Scholar 

  16. Dumontet, H.: Homogénéisation par développements en séries de Fourier. C. R. Acad. Sci. Paris Ser.II296, 1625–1628 (1983).

    Google Scholar 

  17. Walker, K. P., Jordan, E. H., Freed, A. D.: Thermoplastic analysis of fibrous periodic composites using triangular subvolumes. NASA report TM 106076. NASA-Lewis Research Center, Cleveland, OH, 1993.

    Google Scholar 

  18. Moulinec, H., Suquet, P.: A fast numerical method for computing the linear and nonlinear mechanical properties of composites. C. R. Acad. Sci. Paris Ser.II 318, 1417–1423 (1994).

    Google Scholar 

  19. Pruchnicki, E.: Homogenized nonlinear constitutive laws using Fourier series expansion. Int. J. Solids Struct.35, 1895–1913 (1998).

    Google Scholar 

  20. Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids15, 79–95 (1967).

    Google Scholar 

  21. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. London Ser.A 326, 131–147 (1972).

    Google Scholar 

  22. Hill, R.: On macroscopic effects of heterogeneity in elastoplastic media at finite strain. Math. Proc. Camb. Phil. Soc.95, 481–494 (1984).

    Google Scholar 

  23. Hill, R., Rice, J. R.: Elastic potentials and the structure of inelastic constitutive laws. SIAM J. Appl. Math.25, 448–461 (1973).

    Google Scholar 

  24. Ogden, R. W.: Local and overall extremal properties of time — independent materials and non-linear elastic comparison materials. Int. J. Solids Struct.12, 147–158 (1976).

    Google Scholar 

  25. Ogden, R. W.: Extremum principles in non linear elasticity and their application to composites — I. Int. J. Solids Struct.14, 265–282 (1978).

    Google Scholar 

  26. Ponte Castenada, P.: The overall constitutive behaviour of non linearly elastic composites. Proc. R. Soc. London Ser.A 422, 147–171 (1989).

    Google Scholar 

  27. Nemat-Nasser, S., Obata, M.: Rate-dependent, finite elasto-plastic deformation of polycristals. Proc. R. Soc. London Ser.A 407, 343–375 (1986).

    Google Scholar 

  28. Nemat-Nasser, S., Iwakuma, T.: Elastic-plastic composites at finite strains. Int. J. Solids Struct.21, 55–65 (1985).

    Google Scholar 

  29. Marcellini, P., Sbordone, C.: Sur quelques questions de G-convergence et d'homogénéisation non linéaire. C. R. Acad. Sci. Paris Ser.A 284, 535–537 (1977).

    Google Scholar 

  30. Müller, S.: Homogenization of non convex integral functionals and cellular elastic materials. Arch. Rat. Mech. Anal.99, 189–212 (1987).

    Google Scholar 

  31. Abeyaratne, R., Triantafyllidis, N.: An investigation of localization in a porous elastic material using homogenization theory. J. Appl. Mech.51, 481–486 (1984).

    Google Scholar 

  32. Geymonat, G., Müller, S., Triantafyllidis, N.: Quelques remarques sur l'homogénéisation des matériaux élastiques non linéaires. C. R. Acad. Sci. Paris Ser.I311, 911–916 (1990).

    Google Scholar 

  33. Geymonat, G., Müller, S., Triantafyllidis, N.: Homogenization of non linearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Rat. Mech. Anal.122, 231–290 (1993).

    Google Scholar 

  34. Triantafyllidis, N., Maker, B. N.: On the comparison between microscopic and macroscopic instability mechanisms in a class of fiber-reinforced composites. J. Appl. Mech.52, 794–800 (1985).

    Google Scholar 

  35. Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging processes in periodic media. Studies in Mathematics and its Applications, vol.36. Dordrecht: Kluwer 1989.

    Google Scholar 

  36. Pruchnicki, E.: Loi hyperélastique homogénéisée pour les structures composites à matrice élastomère en grandes déformations. In: Multiple scale analyses and coupled physical systems. Ponts & Chaussées St Venant Symposium (Salençon, J., ed.), pp. 275–282 Paris: Publishers 1997.

  37. Pruchnicki, E.: Sur quelques aspects de la théorie de l'homogénéisation des milieux périodiques. Mémoire d'Habilitation, Université de Lille, 1997.

  38. Salamon, M. D. G.: Elastic moduli of a stratified rock mass. Int. J. Rock. Mech. Min. Sci.5, 519–527 (1968).

    Google Scholar 

  39. Sawicki, A.: Yield condition for layered composites. Int. J. Solids Struct.17, 969–979 (1981).

    Google Scholar 

  40. Herrmann, L. R., Welch, K. R., Lim, C. K.: Composite FEM analysis for layered systems. J. Eng. Mech.110, 1284–1302 (1984).

    Google Scholar 

  41. Pruchnicki, E., Shahrour, I.: Loi d'évolution homogénéisée du matériau multicouche à constituants élastoplastiques parfaits. C. R. Acad. Sci. Paris Ser.II 315, 137–142 (1992).

    Google Scholar 

  42. Pruchnicki, E., Shahrour, I.: A macroscopic elastoplastic constitutive law for multilayered media: Application to reinforced earth matrial. Int. J. Num. Anal. Meth. Geomech.18, 507–518 (1994).

    Google Scholar 

  43. Boutin, C.: Microstructural effects in elastic composites. Int. J. Solids Struc.33, 1025–1051 (1996).

    Google Scholar 

  44. Lourenço, P. B.: A matrix formulation for the elastoplastic homogenisation of layered materials. Mech. Cohesive-frictional Mat.1, 273–294 (1996).

    Google Scholar 

  45. Dumontet, H.: Homogénéisation d'un matériau à structure périodique stratifié, de comportement linéaire et non linéaire et viscoélastique. C. R. Acad. Sci. Paris Ser.II 295, 633–636 (1982)

    Google Scholar 

  46. Dumontet, H.: Homogénéisation des matériaux stratifiés du type élastique linéaire, non linéaire et viscoélastique. Thèse de doctorat de 3ème cycle. Université de Paris VI 1983.

  47. Dumontet, H.: Homogénéisation et effects de bords dans les matériaux composites. Thèse de doctorat d'état. Université de Paris VI 1990.

  48. Jankovich, E., Leblanc, F., Durand, M., Bercovier, M.: A finite element method for the analysis of rubber parts, experimental and analytical assessment. Comp. Struct.14, 385–391 (1981).

    Google Scholar 

  49. Häggblad, B., Sundberg, J. A.: Large strain solutions of rubber components. Comp. Struct.17, 835–843 (1983)

    Google Scholar 

  50. Ciarlet, P. G.: Mathematical elasticity, vol. I. Three-dimensional elasticity. Amsterdam New York Oxford Tokyo: North-Holland 1988.

    Google Scholar 

  51. Ogden, R. W.: Large deformation isotropic elasticity — on the correlation of theory and experiment for incompressible rubber like solids. Proc. R. Soc. London Ser.A 326, 565–584 (1972).

    Google Scholar 

  52. Malkus, D. S.: Finite elements with penalties in non linear elasticity. Int. J. Numer. Meth. Eng.16, 121–136 (1980).

    Google Scholar 

  53. Bar-Yoseph, P., Avrashi, J.: New variational-asymptotic formulations for interlaminar stress analysis in laminated plates. J. Appl. Math. Phys.37, 305–321 (1986).

    Google Scholar 

  54. Dumontet, H.: Study of a boundary layer problem in elastic composite materials. Math. Modell. Numer. Anal.20, 265–286 (1986).

    Google Scholar 

  55. Sanchez-Palencia, E.: Boundary layer and edge effects in composite. In: Homogenization techniques for composite media, pp. 121–147. Lecture Notes in Physics, Vol. 272. Berlin Heidelberg New York: Springer 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruchnicki, E. Hyperelastic homogenized law for reinforced elastomer at finite strain with edge effects. Acta Mechanica 129, 139–162 (1998). https://doi.org/10.1007/BF01176742

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176742

Keywords

Navigation