Skip to main content
Log in

Shape group studies of molecular similarity: Shape groups and shape graphs of molecular contour surfaces

  • Papers
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The earlier, symmetry-independent group theoretical characterization of the shapes of three-dimensional molecular functions, such as electrostatic potentials, electronic charge densities, or molecular orbitals, is extended and compared to a new family of shape descriptors. The incidence graphs and shape graphs, defined by the curvature properties of various molecular contour surfaces, provide an easily visualizable, alternative mathematical technique for a computer-based, non-visual evaluation of molecular shape and molecular similarity. The invariance domains of incidence graphs, shape graphs and shape groups within the dynamic shape spaceD provide the mathematical basis for the development of a general method for a dynamic description of molecular shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Coppens and M.B. Hall, eds.,Electron Distributions and the Chemical Bond (Plenum, New York and London, 1982).

    Google Scholar 

  2. W.G. Richards,Quantum Pharmacology, 2nd Ed. (Butterworth, London, 1983).

    Google Scholar 

  3. R. Rein, J.R. Rabinowitz and T.J. Swissler, J. Theor. Biol. 34 (1972)215.

    PubMed  Google Scholar 

  4. E. Scrocco and J. Tomasi, Topics Current Chem. 42 (1973)95.

    Google Scholar 

  5. D.M. Hayes and P.A. Kollman, J. Amer. Chem. Soc. 98 (1976)3335.

    Google Scholar 

  6. P.A. Kollman, Acc. Chem. Res. 10 (1977)365.

    Google Scholar 

  7. E. Scrocco and J. Tomasi, Adv. Quant. Chem. 11 (1978)115.

    Google Scholar 

  8. P.A. Kollman, J. Amer. Chem. Soc. 100 (1978)2974.

    Google Scholar 

  9. J. Tomasi, On the use of electrostatic molecular potentials in theoretical investigations on chemical reactivity, in:Quantum Theory of Chemical Reactions, Vol. 1, ed. R. Daudel, A. Pullman, L. Salem and A. Veillard (Reidel, Dordrecht, The Netherlands, 1979) pp. 191–228.

    Google Scholar 

  10. CM. Thornber, Chem. Soc. Rev. 8 (1979)563.

    Google Scholar 

  11. E.E. Hodgkin and W.G. Richards, J. Chem. Soc. Chem. Commun. (1980) 1342.

  12. R. Carbó, L. Leyda and M. Arnau, Int. J. Quant. Chem. 17 (1980)1185.

    Google Scholar 

  13. G. Náray-Szabó, Quant. Chem. Program Exchange 13 (1980)396.

    Google Scholar 

  14. G. Náray-Szabó, A. Grofcsik, K. Kósa, M. Kubinyi and A. Martin, J. Comput. Chem. 2 (1981)58.

    Google Scholar 

  15. H. Weinstein, R. Osman, J.P. Green and S. Topiol, Electrostatic potentials as descriptors of molecular reactivity, in:Chemical Applications of Atomic and Molecular EIectrostatic Potentials, ed. P. Pulitzer and D.G. Truhlar (Plenum, New York, 1981) pp. 309–334.

    Google Scholar 

  16. J.J. Kaufman, P.C. Hariharan, F.L. Tobin and C. Petrongolo, Electrostatic molecular potential contour maps from ab initio calculations, in:Chemical Applications of Atomic and Molecular Eectrostatic Potentials, ed. P. Pulitzer and D.G. Truhlar (Plenum, New York, 1981) pp. 335 -380.

    Google Scholar 

  17. A. Pullman and B. Pullman, Electrostatic molecular potential of the nucleic acids, in:Chemical Applications of Atomic and Molecular Electrostatic Potentials, ed. P. Pulitzer and D.G. Truhlar (Plenum, New York, 1981) pp. 381–405.

    Google Scholar 

  18. A. Warshel, Acc. Chem. Res. 14 (1981)284.

    Google Scholar 

  19. P.H. Reggio, H. Weinstein, R. Osman and S. Topiol, Int. J. Quant. Chem., Quant. Biol. Symp. 8 (1981)373.

    Google Scholar 

  20. S. Cox and D. Williams, J. Comput. Chem. 2 (1981)304.

    Google Scholar 

  21. Z. Gabányi, P. Surján and G. Náray-Szabó, Eur. J. Med. Chem. 17 (1982)307.

    Google Scholar 

  22. H. Weinstein, R. Osman, S. Topiol and C.A. Venanzi, Pharmacochem. Libr. 6(1983)81.

    Google Scholar 

  23. J. Angyán and G. Náray-Szabó, J. Theor. Biol. 103 (1983)777.

    Google Scholar 

  24. P.E. Bower-Jenkins, D.L. Cooper and W.G. Richards, J. Phys. Chem. 89 (1985)2195.

    Google Scholar 

  25. J.R. Rabinowitz and S.B. Little, Int. E Quant. Chem., Quant. Biol. Symp. 13 (1986)9.

    Google Scholar 

  26. J.C. Culberson, G.D. Purvis III, M.C. Zerner and B.A. Seiders, Int. J. Quant. Chem., Quant. Biol. Symp. 13 (1986)267.

    Google Scholar 

  27. G. Náray-Szabó and P.R. Surján, Computational methods for biological systems, in:Theoretical Chemistry of Biological Systems, ed. G. Náray-Szabó, Studies in Physical and Theoretical Chemistry, Vol. 41 (Elsevier, Amsterdam, 1986) pp. 1–100.

    Google Scholar 

  28. G.D. Purvis III and C. Culberson, Int. J. Quant. Chem., Quant. Biol. Symp. 13 (1986)261.

    Google Scholar 

  29. J. Åqvist and O. Tapia, J. Mal. Graph 5 (1987)30.

    Google Scholar 

  30. P.G. Mezey, Int. J. Quant. Chem., Quant. Biol. Symp. 12 (1986)113.

    Google Scholar 

  31. P.G. Mezey, J.Comput. Chem. 8 (1987)462.

    Google Scholar 

  32. P.G. Mezey, Int. J. Quant. Chem., Quant. Biol. Symp. 14 (1987)127.

    Google Scholar 

  33. G.A. Arteca and P.G. Mezey, Int. J. Quant. Chem., Quant. Biol. SYmp. 14 (1987)133.

    Google Scholar 

  34. E.H. Spanier,Algebraic Topology (McGraw-Hill, New York, 1966).

    Google Scholar 

  35. M. Greenberg,Lectures on Algebraic Topology (Benjamin, New York, 1967).

    Google Scholar 

  36. S.-T. Hu,Elements of General Topology (Holden-Day, San Francisco, 1969).

    Google Scholar 

  37. J. Vick,Homology Theory (Academic Press, New York, 1973).

    Google Scholar 

  38. P.G. Mezey, Theor. Chim. Acta 54 (1980)95.

    Google Scholar 

  39. P.G. Mezey, Theor. Chim. Acta 63 (1983)9.

    Google Scholar 

  40. P.G. Mezey,Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987).

    Google Scholar 

  41. F. Harary,Graph Theory (Addison-Wesley, Don Mills (Ont.), 1972).

    Google Scholar 

  42. P.G. Mezey, Theor. Chim.Acta 60 (1982)409.

    Google Scholar 

  43. P.G. Mezey, Theor. Chim. Acta 58 (1981)309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezey, P.G. Shape group studies of molecular similarity: Shape groups and shape graphs of molecular contour surfaces. J Math Chem 2, 299–323 (1988). https://doi.org/10.1007/BF01166298

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166298

Keywords

Navigation