Skip to main content
Log in

The molecular transform as a similarity measure

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We propose to quantify molecular similarity through various forms of molecular transforms directly related to experimental measurements. Various metric distances between molecular transforms are introduced in measuring similarity which can be used in quantitative structure-activity relationships. For simpler classes of compounds like aliphatic alcohols good correlations are obtained between the abstract distance from a lead compound and various physical and pharmalogical properties. For substituted phenols the correlation is worse; however, the predictive power of the descriptors derived from the molecular transform is yet acceptable. For trypsin inhibitors, a class of compounds having very different molecular formulae, the net atomic charge is introduced as a parameter in the generalized form of the molecular transform. Though a poor regression equation is obtained for the differences in the inhibitory power, inactive compounds within a set can be reliably selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.A. Johnson and G.M. Maggiora, eds.,Concepts and Applications of Molecular Similarity (Wiley, New York, 1990).

    Google Scholar 

  2. H. Lipson and C.A. Taylor,Fourier Transforms and X-Ray Diffraction (Bell, London, 1958).

    Google Scholar 

  3. L.J. Soltzberg and C.L. Wilkins, J. Am. Chem. Soc. 98 (1976) 7139.

    Google Scholar 

  4. L.J. Soltzberg and C.L. Wilkins, J. Am. Chem. Soc. 99 (1977) 439.

    Google Scholar 

  5. L.J. Soltzberg and C.L. Wilkins, J. Am. Soc. 99 (1977) 4006.

    Google Scholar 

  6. Z. Gabányi, P.R. Surján and G. Náray-Szabó, Eur. J. Med. Chem. 17 (1982) 1982.

    Google Scholar 

  7. G. Náray-Szabó, J. Mol. Struct. (THEOCHEM) 134 (1986) 401.

    Google Scholar 

  8. J.W. King, R.J. Kassel and B.B. King, Int. J. Quant. Chem. Quant. Biol. Symp. 17 (1990) 27.

    Google Scholar 

  9. J.W. King and R.J. Kassel, Int. J. Quant. Chem. Quant. Biol. Symp. 18 (1991) 289.

    Google Scholar 

  10. R. Wierl, Appl. Phys. (Leipzig) 8 (1931) 521.

    Google Scholar 

  11. P. Broto, G. Moreau and C. Vandycke, Eur. J. Med. Chem. 19 (1984) 71.

    Google Scholar 

  12. R. Carbó, L. Leyda and M. Arnau, Int. J. Quant. Chem. 17 (1980) 1185.

    Google Scholar 

  13. E.E. Hodgkin and W.G. Richards, Int. J. Quant. Chem. Quant. Biol. Symp. 14 (1987) 105.

    Google Scholar 

  14. Handbook of Chemistry and Physics, 65th Ed. (CRC Press, Boca Raton, 1984-85) pp. C65C576.

  15. T.W. Schultz, L.M. Arnold, T.S. Wilke and M.P. Moulton, Ecotox. Environ. 19 (1990) 243.

    Google Scholar 

  16. G.D. Veith, D.J. Can and L.I. Brook, Can. J. Fish. Aquat. Sci. 40 (1983) 743.

    Google Scholar 

  17. L.B. Kier, J. Pharm. Sci. 69 (1980) 807.

    Google Scholar 

  18. D. Glick and C.G. King, J. Biol. Chem. 94 (1932) 497.

    Google Scholar 

  19. V.K. Gombar and S.L. Wadhwa, Arzneimitt.-Forsch. 32 (1982) 715.

    Google Scholar 

  20. G.L. Biagi, J. Med. Chem. 18 (1975) 868.

    Google Scholar 

  21. F. Markwardt, H. Landmann and P. Walsmann, Eur. J. Biochem. 6 (1968) 502.

    Google Scholar 

  22. F. Markwardt, P. Walsmann and H.G. Kazmirowski, Pharmazie 24 (1969) 400.

    Google Scholar 

  23. F. Markwardt, H. Landmann and P. Walsmann, Pharmazie 25 (1970) 551.

    Google Scholar 

  24. F. Markwardt, P. Walsmann, J. Stürzebecher, H. Landmann and G. Wagner, Pharmazie 28 (1973) 5.

    Google Scholar 

  25. T. Inagami, in:Proteins: Structure and Function, Vol. 1, eds. M. Funatsu, K. Hiromi, T. Murachi and K. Narita (Kodansha/ Wiley, Tokyo /New York, 1972) p. l.

    Google Scholar 

  26. R.R. Tidwell, J.D. Geratz, O. Dann, G. Volz, D. Zeh and H. Loewe, J. Med. Chem. 21 (1978) 613.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csorvássy, I., Tözsér, L., Kárpáti, L. et al. The molecular transform as a similarity measure. J Math Chem 13, 343–357 (1993). https://doi.org/10.1007/BF01165574

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165574

Keywords

Navigation