Skip to main content
Log in

A procedure to obtain an accurate approximation to a full CI wavefunction

Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Based on Jacobi elementary rotations, a simple, elegant procedure to obtain approximate CI wavefunctions is discussed. Essentially, a sequence of (2 x 2) matrices is builtup, and the eigenvector attached to the lowest eigenvalue is used to construct a stepwise set of coefficients, which become a very good approximation to theexact Cl result. Full CI calculations could easily be reached in this way. An example formed by some atoms of the He isoelectronic sequence is provided in order to test the flexibility and accuracy of the procedure. A Fortran 90 code is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. J.K.L. McDonald, Phys. Rev. 43 (1933) 830.

    Google Scholar 

  2. B. Roos, The configuration interaction method, in:Computational Techniques in Quantum Chemistry and Molecular Physics, Vol. D, eds. G.H.F. Diercksen, B.T. Sutcliffe and A. Veillard (Reidel, Dordrecht, 1975) p. 251.

    Google Scholar 

  3. I. Shavitt, The method of configuration interaction, in:Methods of Electronic Structure Theory, Vol. 3, ed. H.F. Schaefer (Plenum Press, New York, 1977) p. 189.

    Google Scholar 

  4. P.E.M. Siegbahn,The externally contracted CI method, in:Current Aspects of Quantum Chemistry 1981, ed. R. Carbó (Elsevier, Amsterdam, 1982) p. 65.

    Google Scholar 

  5. P.E.M. Siegbahn,The direct CI method, in:Methods in Computational Molecular Physics, Vol. 113, eds. G.H.F. Diercksen and S. Wilson (Reidel, Dordrecht, 1983) p. 189.

    Google Scholar 

  6. P.J. Knowles and N.C. Handy, J. Chem. Phys. 91 (1989) 2396.

    Google Scholar 

  7. G.L. Bendazzoli, G. Fano, F. Ortolani and P. Palmieri, J. Chem. Phys. 76 (1982) 2498.

    Google Scholar 

  8. G.L. Bendazzoli, G. Fano, F. Ortolani and P. Palmieri, J. Chem. Phys. 83 (1985) 674.

    Google Scholar 

  9. W. Duch and J. Meller, Int. J. Quant. Chem. 50 (1994) 243.

    Google Scholar 

  10. W. Duch, Chem. Phys. Lett. 162 (1989) 56.

    Google Scholar 

  11. A. Booten and H. van der Vorst, Computers in Phys. 10 (1996) 239.

    Google Scholar 

  12. A. Booten and H. van der Vorst, Computers in Phys. 10 (1996) 331.

    Google Scholar 

  13. R. Carbó, Ll. Domingo and J.J. Peris, Adv. Quant. Chem. 15 (1982) 215.

    Google Scholar 

  14. R. Carbó, J. Miró, Ll. Domingo and J.J. Novoa, Adv. Quant. Chem. 20 (1989) 375.

    Google Scholar 

  15. R. Carbó and B. Calabuig, Comp. Phys. Commun. 52 (1989) 345.

    Google Scholar 

  16. R. Carbó, Ll. Domingo, J.J. Peris and J.J. Novoa, J. Mol. Struct. 93 (1983) 15.

    Google Scholar 

  17. R. Carbó, Ll. Domingo and J.J. Novoa, J. Mol. Struct. 120 (1985) 357.

    Google Scholar 

  18. R. Carbó, Ll. Molino and B. Calabuig, J. Comput. Chem. 13 (1992) 155.

    Google Scholar 

  19. C.G.J. Jacobi, J. Reine. Angew. Math. 30 (1846) 51.

    Google Scholar 

  20. R. Carbó and Ll. Domingo, Int. J. Quant. Chem. 32 (1987) 517.

    Google Scholar 

  21. R. Carbó and E. Besalú, Comput. & Chem. 18 (1994) 117.

    Google Scholar 

  22. R. Carbó and E. Besalú, J. Math. Chem. 18 (1995) 37.

    Google Scholar 

  23. R. Carbó and E. Besalú, in:Strategies and Applications in Quantum Chemistry: From Astrophysics to Molecular Engineering, eds. M. Defranceschi and Y. Ellinger (Kluwer, Amsterdam, 1996) pp. 229–248.

    Google Scholar 

  24. R.G. Parr,The Quantum Theory of Molecular Electronic Structure (Benjamin, New York, 1963).

    Google Scholar 

  25. R. Carbó, TWOEL-96, Institute of Computational Chemistry, University of Girona, Girona, Spain (1996).

  26. C.C.J. Roothaan and P.S. Bagus,Methods in Computational Physics, Vol. 2 (Academic Press, New York, 1963).

    Google Scholar 

  27. C.F. Bunge, J.A. Barrientos, A.V. Bunge and J.A. Cogordan, Phys. Rev. A46 (1992) 3691.

    Google Scholar 

  28. T. Koga, H. Tatewaki and A.J. Thakkar, Theor. Chim. Acta 88 (1994) 273.

    Google Scholar 

  29. R.K. Nesbet, J. Chem. Phys. 43 (1965) 311.

    Google Scholar 

  30. E.R. Davidson, in:Methods in Computational Molecular Physics, Vol. 113, eds. G.H.F. Diercksen and S. Wilson (Reidel, Dordrecht, 1983) p. 95.

    Google Scholar 

  31. G.H. Golub and Ch.F. Van Loan,Matrix Computations (The Johns Hopkins Univ. Press, Baltimore, 1993).

    Google Scholar 

  32. J.H. Wilkinson and C. Reinsch,Linear Algebra (Springer, Berlin, 1971).

    Google Scholar 

  33. E. Durand,Solutions Numériques des Equations Algébriques, Vol. H (Masson & Cie, Paris, 1961).

    Google Scholar 

  34. J.H. Wilkinson,The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbó-Dorca, R., Besalú, E. A procedure to obtain an accurate approximation to a full CI wavefunction. J Math Chem 20, 263–271 (1996). https://doi.org/10.1007/BF01165347

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165347

Keywords

Navigation