Skip to main content
Log in

Distribution of platinum group elements in the Great Serpentinite Belt of New South Wales, Eastern Australia

Verteilung der Platingruppen-Elemente im Great Serpentinite Belt von New South Wales, Ost-Australien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The distribution of platinum group elements (PGE) within individual lithological units of the dismembered ophiolite of the Great Serpentinite Belt in New South Wales displays distinctive patterns. Within the ophiolite the PGE are mainly magmatic in origin, although the whole sequence has been extensively metamorphosed and deformed. The PGE in this ophiolite demonstrate fractionation resulting from magmatic processes.

Harzburgite is characterised by a flat normalised PGE pattern, with only a slight depletion in PPGE. The minor PGE differentiation in the residual mantle rocks is probably due to the control on the PGE distribution by residual alloys and sulfides. This implies that the primary magma, generated from partial melting, was S-saturated.

Cumulates of the overlying magmatic sequence show a positively sloped PGE pattern, favouring PPGE enrichment. PGE distribution in the cumulate sequence was controlled by immiscible sulfides, resulting in a similar PGE pattern for individual members of the cumulates. The highest PGE content in the magmatic section is recorded in the banded chromitite where the PGE enrichment probably results from upward-migrating magmatic fluids.

Podiform chromitite is the earliest fractionated product from ascending partial melts within narrow magma conduits that channeled melts from the mantle source up to the overlying magma chamber. Such a process operated at high temperatures, hence the high melting-point IPGE was preferentially crystallised along with the chromites so that podiform chromitite displays a negatively sloped PGE pattern. Normally, sulfide saturation in the ascending melt does not take place until the melt enters the crustal magma chamber. However, immiscible sulfide liquids might have been present temporarily in some high-level podiform chromitite to generate a Pt- and Pd-enriched pod. Chromite in this pod is less in both Cr/(Al + Cr) and Mg/(Mg + F2+) than in those of other podiform chromitites that are dominated by IPGE and, therefore, the composition of chromite is of significance in identifying the potential Pt- and Pd-rich chromitites in this ophiolite belt.

Zusammenfassung

Die Verteilung der Platingruppen-Elemente (PGE) innerhalb der einzelnen lithologischen Einheiten des zerbrochenen Ophiolites des Great Serpentinite Belt in New South Wales zeigt charakteristische Verteilungsmuster. Die PGE sind überwiegend magmatischen Ursprungs, obwohl der gesamte Komplex intensiv metamorphosiert und deformiert worden ist. Innerhalb des Ophiolites zeigen die PGE Fraktionierung, die das Resultat magmatischer Prozesse ist.

Der Harzburgit ist durch flache, normierte PGE Verteilungskurven charakterisiert, die lediglich eine schwache Verarmung an PPGE zeigen. Die geringe PGE Differenzierung in den residualen Mantelgesteinen wird durch die Steuerung der PGE Verteilung durch residuale Legierungen und Sulfide kontrolliert. Dies bedeutet, daß das durch Teilaufschmelzung entstandene Magma S-gesättigt gewesen ist.

Die Kumulate der hangenden, magmatischen Abfolge zeigen positive PGE Verteilungskurven, die auf eine Anreicherung der PPGE hinweisen. Die PGE Verteilung in der Kumulat-Sequenz wurde durch entmischte Sulfide kontrolliert, weshalb die einzelnen Schichtglieder der Kumulat-Abfolge ähnliche PGE Verteilungsmuster aufweisen. Die gebänderten Chromitite zeigen die höchsten PGE Gehalte der magmatischen Abfolge, die Anreicherung der PGE ist vermutlich auf aufsteigende, magmatische Fluida zurückzuführen.

Der podiforme Chromitit ist das früheste Fraktionierungsprodukt der vom Mantel durch enge Kanäle in die Magmakammer aufsteigenden Teilschmelzen. Ein derartiger Prozeß findet bei hohen Temperaturen statt, weshalb die IPGE, die hohe Schmelzpunkte aufweisen, zusammen mit dem Chromit zur Kristallisation gelangten, podiforme Chromitite zeigen daher negative PGE Verteilungskurven. Normalerweise findet eine Schwefel-Sättigung der aufsteigenden Schmelze nicht vor dem Eintritt in die krustale Magmenkammer statt. Temporär könnte jedoch eine entmischte Schwefel-Schmelze bereits in einigen “high level” podiformen Chromititen existiert haben, sodaß ein Pt- und Pd-angereicherter Pod entsteht. Der Chromit in diesem Pod zeigt niedere Cr/(Al + Cr) und Mg/(Mg + Fe2+) Verhältnisse als jene in anderen podiformen Chromititen, die von IPGE dominiert sind. Die Zusammensetzung des Chromites ist daher signifikant, um Pt-und Pd-reiche Chromitite innerhalb dieses Ophiolit-Gürtels zu identifizieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agioritis G, Wolf R (1978) Aspects of osmium, ruthenium and iridium contents in some Greek chromitites. Chem Geol 23: 267–272

    Google Scholar 

  • Aitchison JC, Flood PG, Spiller FCP (1992) Tectonic setting and paleoenvironment of terrains in the southern New England Orogen, eastern Australia, as constrained by radiolarian biostratigraphy. Palaeograph Palaeoclimatol Palaeoecol 9: 31–54

    Google Scholar 

  • Aitchison JC, Ireland TR, Flood PG, Vickers MD, Blake MC Jr (1990) The age of the Great Serpentinite Belt (Weraerai terrain) in Northern NSW, Australia: implications for the development of the New England tectonic collage. EOS 71: 1591

    Google Scholar 

  • Amossè J, Allibert M, Fischer W, Piboule M (1990) Experimental study of the solubility of platinum and iridium in basic silicate melts—implications for the differentiation of platinum-group elements during magmatic processes. Chem Geol 81: 45–53

    Google Scholar 

  • Ballhaus C, Stumpfl EF (1986) Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid inclusions. Contrib Mineral Petrol 94: 193–204

    Google Scholar 

  • Barin I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer, Berlin Heidelberg New York, 921 pp

    Google Scholar 

  • Barnes S-J, Naldrett AJ, Gorton MP (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol 53: 303–323

    Google Scholar 

  • Barnes S-J, Boyd R, Korneliussen A, Nilsson L-P, Often M, Pedersen RB, Robin B (1988) The use of mantle normalisation and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold nickel and copper: examples from Norway. In:Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geo-platinum 87. Elsevier Applied Sci, London, pp 113–143

    Google Scholar 

  • Black MC Jr, Murchey BL (1988) A California model for the New England fold belt. In:Kleeman JD (ed) New England orogen tectonics and metallogenesis. Dept Geol & Geophys, Univ New England, Armidale, pp 20–31

    Google Scholar 

  • Boudreau AE (1988) Investigation of the Stillwater Complex, part IV. The role of volatiles in the petrogenesis of the J-M Reef. Can Mineral 26: 193–208

    Google Scholar 

  • Boudreau AE, McCallum I (1992) Concentration of platinum-group elements by magmatic fluids in layered intrusions. Econ Geol 87: 1830–1848

    Google Scholar 

  • Bridges JC, Prichard HM (1991) The mineralogical and geochemical behaviour of PGE in podiform chromitites from the Braganca,N Portugal. In:Barnes S-J (ed) 6th Platinum Symp, Programme & Abstr, p 12

  • Buchanan DL, Nolan J (1979) Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld-Complex rocks. Can Mineral 17: 483–494

    Google Scholar 

  • Campbell IH, Barnes S-J (1984) A model for the geochemistry of the platinum-group elements in magmatic sulfide deposits. Can Mineral 22: 151–160

    Google Scholar 

  • Capobianco CJ, Drake MJ (1990) Partitioning of ruthenium, rhodium and palladium between spinel and silicate melt and implications for platinum group element fractionation trends. Geochim Cosmochim Acta 54: 869–874

    Google Scholar 

  • Church WR, Riccio L (1977) Fractionation trend in the Bay of Island ophiolite of Newfoundland: polyeyclic cumulate sequences in ophiolites and their classification. Can J Earth Sci 14: 1156–1165

    Google Scholar 

  • Coish RA (1977) Ocean floor metamorphism in the Betts Cove ophiolite, Newfoundland. Contrib Mineral Petrol 60: 255–270

    Google Scholar 

  • Collins WJ, Offler R, Farrell TR, Landenberger B (1993) A revised Late Palaeozoic-Early Mesozoic tectonic history of the southern New England Fold Belt. In:Flood PG, Aitchison JC (eds) New England orogen, eastern Australia. Dept Geol & Geophys, Univ New England, Armidale, pp 69–84

    Google Scholar 

  • Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogenesis and tectonic setting of boninites. In:Crawford AJ (ed) Boninites. Unwin Hyman, London, pp 2–49

    Google Scholar 

  • Crocket JH, Fleet MH, Stone WE (1992) Experimental partitioning of osmium, iridium and gold between basaltic melt and sulfide liquid. Aus J Earth Sci 39: 427–432

    Google Scholar 

  • Crook KAW, Falton EA (1975) Tasman Geosyncline greenstones and ophiolites. J Geol Soc Austr 22: 117–131

    Google Scholar 

  • Cross KC, Fergusson CL, Flood PG (1987) Contrasting structural styles in the Paleozoic subduction complex of the southern New England Orogen, eastern Australia. In:Leitch EC, Scheibner E (eds) Terrain accretion and orogenic belts. Am Geophys Union, Washington, pp 83–92

    Google Scholar 

  • Davies G, Tredoux M (1985) The platinum-group elements and gold contents of the marginal rocks and sills of the Bushveld Complex. Econ Geol 80: 838–848

    Google Scholar 

  • Edwards SJ (1990) Harzburgites and refractory melts in the Lewis Hill Massif, Bay of Island ophiolite complex: the base-metal and precious-metal story. Can Mineral 28: 537–552

    Google Scholar 

  • Fischer W, Amossè J, Leblanc M (1988) PGE distribution in some ultramafic rocks and minerals from the Bou-Azzer ophiolite complex (Morocco). In:Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geo-platinum 87. Elsevier Applied Sci, London, pp 199–210

    Google Scholar 

  • Fleet MH, Stone WE, Crocket JH (1991) Partitioning of palladium, iridium and platinum between sulfide liquid and basalt melt:effects of melt composition, concentration and oxygen fugacity. Geochim Cosmochim Acta 55: 2545–2554

    Google Scholar 

  • Gauthier M, Corrivaux L, Trottier LJ, Cabri J, Laflamme JHG, Bergeron M (1990) Chromitites platinifères des complexes ophiolitiques de l'Estrie-Beauce, Appalaches du Sud du Québec. Mineral Deposita 25: 169–178

    Google Scholar 

  • Gijbels R, Millard HT, Desborough GA, Bartel AJ (1974) Osmium, ruthenium, iridium and uranium in silicates and chromite from the eastern Bushveld Complex, South Africa. Geochim Cosmochim Acta 38: 319–337

    Google Scholar 

  • Golding HG (1975) Relict textures of chromitites from New South Wales. J Geol Soc Austr 22: 397–412

    Google Scholar 

  • Groves DI, Keays RR (1979) Mobilisation of ore-forming elements during alteration of dunites, Mt Keith-Betheno, Western Australia. Can Mineral 17: 373–389

    Google Scholar 

  • Hamlyn PR, Keays RR (1986) Sulfur saturation and second-stage melts: application to the Bushveld platinum metal deposits. Econ Geol 81: 1431–1445

    Google Scholar 

  • Hiemstra SA (1979) The role of collectors in the formation of the platinum deposits in the Bushveld Complex. Can Mineral 17: 469–482

    Google Scholar 

  • Hulbert LJ, Von Gruenewaldt G (1985) Textural and compositional features of chromite in the Lower and Critical zones of the Bushveld Complex, south of Potgietersrus. Econ Geol 80: 872–895

    Google Scholar 

  • Irvine NT (1977) Origin of chromite layers in the Muskox intrusion and other stratiform intrusions: a new interpretation. Geology 5: 273–277

    Google Scholar 

  • Johan S, Watkinson DH (1985) Significance of a fluid phase in platinum-group element concentration: evidence from the Critical Zone, Bushveld Complex. Can Mineral 23: 305–306

    Google Scholar 

  • Keays RR (1982) Palladium and iridium in komatiites and associated rocks: application to petrogenetic problems. In:Arndt NT, Nisbett EG (eds) Komatiites. Allen & Unwin, London, pp 435–457

    Google Scholar 

  • Keays RR, Davison RM (1976) Palladium, iridium and gold in the ores and host rocks of nickel sulfide deposits in Western Australia. Econ Geol 71: 1214–1228

    Google Scholar 

  • Konstantopoulou G, Economou-Eliopoulos M (1991) Distribution of platinum-group elements and gold within the Vourinos chromitite ores, Greece. Econ Geol 86: 1672–1682

    Google Scholar 

  • Lago BL, Rabinowicz M, Nicolas A (1982) Podiform chromite ore bodies: a genetic model. J Petrol 23: 103–125

    Google Scholar 

  • Leitch EC (1974) The geological development of the southern part of the New England Fold Belt. J Geol Soc Austr 21: 133–156

    Google Scholar 

  • Lesher CM (1989) Komatiite-associated nickel sulfide deposits. In:Whitney JA,Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4: 45–101

  • Lorand JP (1988) Fe-Ni-Cu sulfides in tectonic peridotites from the Maqsad district, Sumail ophiolite, southern Oman: implications for the origin of sulfide component in the oceanic upper mantle. Tectonophysics 151: 57–73

    Google Scholar 

  • Lord RA,Prichard HM (1991) Magmatic distribution and fractionation of platinum group elements in the Shetland ophiolite complex. In:Barnes S-J (ed) 6th Int Platinum Symp, Programme & Abstr, pp 32–33

  • Mathez EA (1976) Sulfur solubility and magmatic sulfides in submarine basaltic glass. J Geophys Res 81: 4269–4276

    Google Scholar 

  • Mathez EA,Peach CL (1989) The geochemistry of the platinum-group elements in mafic and ultramafic rocks. In:Whitney JA,Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4: 33–43

  • McElduff B, Stumpfl EF (1990) Platinum-group minerals from the Troodos Ophiolite, Cyprus. Mineral Petrol 42: 211–232

    Google Scholar 

  • Mitchel RH, Keays RR (1981) Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metal-rich intergranular components in the upper mantle. Geochim Cosmochim Acta 45: 2425–2442

    Google Scholar 

  • Mountain BW, Wood SA (1988) Solubility and transport of platinum-group elements in hydrothermal solutions: thermodynamic and physical chemical constraints. In:Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geo-platinum 87. Elsevier Applied Sci, London, pp 57–82

    Google Scholar 

  • Murck BW, Campbell IH (1986) The effects of temperature, oxygen fugacity and melt composition on the behaviour of chromium in basic and ultrabasic melts. Geochim Cosmochim Acta 50: 1871–1887

    Google Scholar 

  • Naldrett AJ (1989) Stratiform PGE deposits in layered intrusions. In:Whitney JA,Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4: 135–165

  • Naldrett AJ, Von Gruenewaldt G (1989) Association of platinum-group elements with chromitite in layered intrusions and ophiolite complexes. Econ Geol 84: 180–187

    Google Scholar 

  • Naldrett AJ, Lehmann J (1988) Spinel non-stoichiometry as the explanation for Ni-, Cu- and PGE-enriched sulfides in chromitites. In:Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geo-platinum 87. Elsevier Applied Sci, London, pp 93–109

    Google Scholar 

  • Nicolas A (1989) Structures of ophiolites and dynamics of oceanic lithosphere. Kluwer Academic Publ, Dordrecht Boston London, 367 pp

    Google Scholar 

  • Nixon GT, Cabri LJ, Laflamme JHG (1990) Platinum-group element mineralisation in lode and placer deposits associated with the Tulameen Alaska-type complex, British Columbia. Can Mineral 28: 503–535

    Google Scholar 

  • Ohnenstetter M,Cina A,Johan Z,Karaj N,Neziraj A (1991) PGE mineralisation in ophiolitic mantle and cumulates of Albania: preliminary results. In:Barnes S-J (ed) 6th Int Platinum Symp Programme & Abstr, p 41

  • Oshin IO, Crocket JH (1982) Noble metals in Thetford Mines ophiolites, Quebéc, Canada, part 1. Distribution of gold, iridium, platinum and palladium in the ultramafic and gabbroic rocks. Econ Geol 77: 1556–1570

    Google Scholar 

  • Oshin IO, Crocket JH (1986) Noble metals in Thetford Mines ophiolites, Québec, Canada, part 2. Distribution of gold, silver, iridium, platinum and palladium in the Lac de l'Est volcano-sedimentary section. Econ Geol 81: 931–945

    Google Scholar 

  • Page NJ, Talkington RW (1984) Palladium, platinum, rhodium and iridium in peridotites and chromitites from ophiolite complexes in Newfoundland. Can Mineral 22: 137–149

    Google Scholar 

  • Page NJ, Singer DA, Moring BC, Carlson CA, McDade JM, Wilson S (1986) Platinum-group element resources in podiform chromitites from California and Oregon. Econ Geol 81: 1262–1271

    Google Scholar 

  • Peck DC, Keays RR (1990) Insights into the behaviour of precious metals in primitive S-undersaturated magmas: evidence from the Heazlewood River complex, Tasmania. Can Mineral 28: 553–577

    Google Scholar 

  • Peck DC, Keays RR (1991) Magmatic origin of alluvial Os-Ir-Ru alloys from western Tasmania, Australia. In:Barnes S-J (ed) 6th Int Platinum Symp, Programme & Abstr pp 43–44

  • Prichard HM, Lord RA (1990) Platinum and palladium in the Troodos ophiolite complex, Cyprus. Can Mineral 28: 607–618

    Google Scholar 

  • Prichard HM, Tarkian M (1988) Platinum and palladium minerals from two PGE-rich localities in the Shetland Ophiolite Complex. Can Mineral 26: 979–990

    Google Scholar 

  • Roeder PL, Jamieson HE (1991) Composition of chromite and co-existing PtFe alloy at magmatic temperatures. In:Barnes S-J (ed) 6th Int Platinum Symp, Programme & Abstr, pp 46–47

  • Roeder PL, Reynolds I (1991) Crystallisation of chromite and chromium solubility in basaltic melts. J Petrol 32: 909–934

    Google Scholar 

  • Stumpfl EF (1986) The distribution, transport and concentration of platinum group elements. In:Gallagher MJ, Ixer RA, Neary CR, Prichard HM (eds) Metallogeny of basic and ultrabasic rocks. Inst Min Metall London, Proc Conf Edinburgh, pp 427–440

  • Stumpfl EF (1993) Fluids: a prerequisite for platinum metals mineralisation. In:Fenoll Hach-Ali P, Torres-Ruiz J, Gervilla F (eds) Current research in geology applied to ore deposits. Proc 2nd Biennial SGA Meeting Granada, pp 15–21

  • Talkington RW, Lipin BR (1986) Platinum-group minerals in chromite seams of the Stillwater Complex, Montana. Econ Geol 81: 1079–1186

    Google Scholar 

  • Thalhammer OAR, Prochaska W, Mühlhans HW (1990) Solid inclusions in chrome-spinels and platinum group element concentrations from the Hochgrössen and Kraubath ultramafic massifs (Austria): their relationship to metamorphism and serpentinisation. Contrib Mineral Petrol 105: 66–80

    Google Scholar 

  • Von Gruenewaldt G, Hatton CJ, Merkle RKW, Gain SB (1986) Platinum-group elements - chromite associations in the Bushveld Complex. Econ Geol 81: 1067–1079

    Google Scholar 

  • Wendlandt RF (1982) Sulfide saturation of basalt and andesite melts at high pressures and temperatures. Am Mineral 67: 877–885

    Google Scholar 

  • Yang K, Seccombe PK (1993) Platinum-group minerals in the Great Serpentinite Belt of New South Wales. Mineral Petrol 47: 268–283

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yangs, K., Thalhammer, O.A.R. & Seccombe, P.K. Distribution of platinum group elements in the Great Serpentinite Belt of New South Wales, Eastern Australia. Mineralogy and Petrology 54, 191–211 (1995). https://doi.org/10.1007/BF01162861

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01162861

Keywords

Navigation