Skip to main content
Log in

Nickel-copper mineralization at Talnotry, Newton Stewart, Scotland

Die nickel-kupfer vererzung von Talnotry, Newton Stewart, Schottland

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Nickel-copper mineralization occurs near the base of a diorite intrusion close to its contact with hornfelsed Ordovician and Silurian shales and greywackes. The principal ore minerals are nickeline, gersdorffite, pyrrhotine, pentlandite and chalcopyrite with minor amounts of molybdenite, tellurobismutite, gold, sphalerite and argentopentlandite. Pyrite, marcasite, violarite and goethite also occur but are interpreted as later alteration products. Much of the pyrrhotine-rich mineralization at the base of the intrusion is in the form of blebs and interstitial aggregates with amphiboles, plagioclase feldspar, biotite, chlorite and quartz. Chalcopyrite-rich and nickeline-gersdorffite-rich mineralization occurs above this and immediately below unmineralized diorite in the form of patches, lenticular masses and stringers along joints and fractures.

Whole rock and ore analyses and electron microprobe data on the silicates, sulphides and sulpharsenides are presented.

The unmineralized diorite has low SiO2 and high MgO contents compared to typical diorites and relatively high Cr, Ni and Ti trace element values. In the mineralized diorite, platinum-group elements occur in very low concentrations in the pyrrhotineand chalcopyrite-rich assemblages but Pt, Pd and Au show significant enrichment in the nickeline-gersdorffite-rich mineralization.

A magmatic origin for the mineralization is proposed rather than formation by hydrothermal solutions or metasomatism.

Zusammenfassung

Die Nickel-Kupfer Vererzung befindet sich im Kontaktbereich einer Dioritintrusion mit hornfelsdurchdrungenen silurischen und ordovizischen Grauwacken. Die am häufigsten auftretenden Erzmineralien sind Nickelin, Gersdorffit, Pyrrhotin, Pentlandit, und Chalcopyrit mit kleineren Mengen von Molybdenit, Tellurwismuth, Gold, Sphalerit und Argentopentlandit. Weiters treten als spätere Umwandlungsprodukte Pyrit, Markasit, Violarit und Goethit auf. Ein großer Teil der Pyrrhotin-reichen Vererzung am Fuße des eingedrungenen Diorits bildet fleckige, lückenfüllende Aggregate zwischen den Silikatphasen (Amphibol, Plagioklas, Biotit, Chlorit, Quarz). Die Chalcopyrit- und Nickelin-Gersdorffit-reiche Vererzung tritt zwischen dem unvererzten Diorit im Hangenden und der Pyrrhotin-reichen Vererzung im Liegenden als linsige, lappenartige Konzentration und entlang von Fugen und Brücken auf.

Vollgesteins-Analysen sowie ausgewählte Erzanalysen und Mikrosondenergebnisse der Silikate, Sulfide und Sulfarsenide liegen vor.

Im Unterschied zu den typischen Dioriten zeigt der unvererzte Diorit einen niedrigen SiO2 und hohen MgO Gehalt und relativ hohe Cr, Ni und Ti Spurenelementwerte. Die Platingruppenelemente sind in den Pyrrhotin- und Chalcopyrit-reichen Vererzungen nur schwach vertreten, jedoch sind Pt, Pd und An in der Gersdorffit-reichen Vererzung stark angereichert.

Ein magmatischer Ursprung dieser Vererzung, im Gegensatz zu einer metasomatischen Entstehung oder Bildung aus hydrothermalen Lösungen wird vermutet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes SJ, Naldrett AJ (1986) Geochemistry of the J-M (Howland) reef of the Stillwater Complex, Minneapolis Adit area. 1. Sulfide chemistry and sulfide-olivine equilibriuma discussion. Econ Geol 81: 203–206

    Google Scholar 

  • Bayliss P (1982) A further crystal structure refinement of gersdorffite. Am Min 67: 1058–1064

    Google Scholar 

  • Cabri LJ (1973) New data on phase relations in the Cu-Fe-S system. Econ Geol 68: 443–454

    Google Scholar 

  • ——Blank H, El Goresy A, Laflamme JHG, Nobiling R, Sizgoric MB, Traxel K (1984) Quantitative trace element analyses of sulfides from Sudbury and Stillwater by proton microprobe. Can Min 22: 521–542

    Google Scholar 

  • —— (1976) The mineralogy of the platinum-group elements from some copper-nickel deposits of the Sudbury area, Ontario. Econ Geol 71: 1159–1195

    Google Scholar 

  • — — (1984) Mineralogy and distribution of platinum-group elements in mill products from Sudbury. In:Park WC, Hausen DM, Hagni R (eds) Proceedings of the Second International Congress on Applied Mineralogy in the Minerals Industry, Los Angeles, California pp 911-922

  • Chernyshev NM (1985) [A new type of nickel sulphide mineralization in the Voronezh crystalline massif] in Russian. Geol Rudn Mest 1985, No 3, 34–45. (English translation in Int Geol Rev 27: 859–870)

    Google Scholar 

  • Cook DR (1976) The geology of the Cairnsmore of Fleet granite and its environs, southwest Scotland. Unpubl PhD thesis, University of St. Andrews

  • Craig JR (1973) Pyrite-pentlandite assemblages and other low temperature relations in the Fe-Ni-S system. Am J Sci 273-A: 496–510

    Google Scholar 

  • Kullerud G (1969) Phase relations in the Cu-Ni-Fe-S system and their application to magmatic ore deposits. In:Wilson HDB (ed) Magmatic ore deposits. Econ Geol Monograph 4: 344–358

  • Criddle AJ, Stanley CJ (1986) The Quantitative Data File for Ore Minerals. British Museum (Natural History). 471 pp

  • Dewey H (1920) Arsenic and antimony ores. Mem Geol Surv GB Spec Rep Min Res 15: 59 pp

  • Durazzo A, Taylor LA (1982) Experimental exsolution textures in the system bornitechalcopyrite, genetic implications concerning natural ores. Mineral Deposita 17: 313–332

    Google Scholar 

  • Fleet ME (1977) Origin of disseminated copper-nickel sulphide ore at Frood, Sudbury, Ontario. Econ Geol 72: 1449–1456

    Google Scholar 

  • —— (1986) Geochemistry of the J-M (Howland) reef of the Stillwater Complex, Minneapolis Adit area. 1. Sulfide chemistry and sulfide-olivine equilibrium—a discussion. Econ Geol 81: 199–203

    Google Scholar 

  • Gallagher MJ et al (1983) Stratabound arsenic and vein antimony mineralization in Silurian greywackes at Glendinning, S. Scotland. Min Reconn Rep Inst Geol Sci, No 59

  • Goldschmidt VM (1954) Geochemistry. Clarendon Press, Oxford.

    Google Scholar 

  • Gregory JW (1925) Magmatic ores. Trans Faraday Soc 20: 1–10

    Google Scholar 

  • —— (1928) The Nickel-Cobalt Ore of Talnotry, Kirkcudbrightshire. Trans Inst Min Metall 37: 178–195

    Google Scholar 

  • Grip E (1978) p 161. In: Mineral Deposits of Europe, vol 1. NW Europe Inst Min Metall & Min Soc

  • Groves DI, Hall SR (1978) Argentian pentlandite with parkerite, joseite A and the probable Bi-analogue of ullmannite from Mount Windarra, W. Australia. Can Min 16: 1–7

    Google Scholar 

  • ——,Marchant M, Maske S, Cawthorn RG (1986) Composition of ilmenites in Fe-Ni-Cu sulphides and host rocks, Insizwa, Southern Africa: Proof of coexisting immiscible sulfide and silicate liquids. Econ Geol 81: 725–731

    Google Scholar 

  • Halliday AN, Aftalion M, van Breemen O, Joycelyn J (1979) Petrogenetic significance of Rb-Sr and U-Pb isotopic systems in 400 Ma old British granitoids and their hosts. In:Harris AL, Holland CH, Leake BE (eds) The Caledonides of the British Isles-Reviewed. Geol Soc London Spec Publ 8: 653–661

  • ——,Stephens WE, Harmon RS (1980) Rb-Sr and O isotopic relationships in 3 zoned Caledonian granitic plutons, Southern Uplands, Scotland: evidence for varied sources and hybridization of magmas. J Geol Soc London 137: 329–349

    Google Scholar 

  • —— (1984) Crustal controls on the genesis of the 400 Ma old Caledonian granites. Phys Earth & Planet Interiors 35: 89–104

    Google Scholar 

  • —— (1984) Coupled Sm-Nd and U-Pb systematics in late Caledonian granites and the basement under northern Britain. Nature 307: 229–233

    Google Scholar 

  • Harris DC, Nickel EH (1972) Pentlandite compositions and associations in some mineral deposits. Can Min 11: 861–878

    Google Scholar 

  • Haughton DR, Roeder PL, Skinner BJ (1974) Solubility of sulphur in mafc magmas. Econ Geol 69: 451–462

    Google Scholar 

  • Hoffman EL, Naldrett AJ, van Loon JC, Hancock RGV Manson A (1978) The determination of the platinum-group elements and gold in rocks and ores by neutron activation analysis after preconcentration by a nickel sulphide fire-assay technique on large samples. Anal Chim Acta 102: 157–166

    Google Scholar 

  • Hudson DR, Groves DI (1974) The composition of violarite coexisting with vaesite, pyrite and millerite. Econ Geol 69: 1335–1340

    Google Scholar 

  • IGCP (1979) Project No. 161 and a proposed classification of Ni Cu PGE sulphide deposits. Can Min 17: 143–144

    Google Scholar 

  • Irvine TN (1975) Crystallization sequence of the Muskox Intrusion and other layered intrusions II. Origin of chromitite layers and simlar deposits of other magmatic ores. Geochim Cosmochim Acta 39: 991–1020

    Google Scholar 

  • Keays RR, Crockett JH (1970) A study of precious metals in the Sudbury nickel irruptive ores. Econ Geol 65: 438–450

    Google Scholar 

  • —— (1982) Iridium and palladium as discriminants of volcanic-exhalative, hydrothermal and magmatic nickel sulphide mineralization. Econ Geol 77: 1535–1547

    Google Scholar 

  • Kelly DP, Vaughan DJ (1983) Pyrrhotine-pentlandite ore textures: a mechanistic approach. Min Mag 47: 453–463

    Google Scholar 

  • — (1985) Pentlandite exsolution in the Fe-Ni-S system: a mechanistic approach to pentlandite/ pyrrhotite ore textures. Unpubl. PhD thesis, University of Aston.

  • Kissin SA, Scott SD (1982) Phase relations involving pyrrhotite below 350°C. Econ Geol 77: 1739–1754

    Google Scholar 

  • Kojima S, Sugaki A (1985) Phase relations in the Cu-Fe-Zn-S system between 500° and 300 °C under hydrothermal conditions. Econ Geol 80: 158–171

    Google Scholar 

  • Mandziuk ZL, Scott SD (1977) Synthesis, stability and phase relations of argentopentlandite in the system Ag-Fe-Ni-S. Can Min 15: 349–364

    Google Scholar 

  • McCallum ME, Loucks RR, Carlson RR, Cooley EF, Doerge TA (1976) Platinum metals associated with hydrothermal copper ores of the New Rambler Mine, Medicine Bow Mountains, Wyoming. Econ Geol 71: 1429–1450

    Google Scholar 

  • Michener CE (1940) Minerals associated with larger sulphide bodies of the Sudbury type. Unpubl. PhD thesis, University of Toronto.

  • Misra KC, Fleet ME (1973) The chemical compositions of synthetic and natural pentlandite assemblages. Econ Geol 68: 518–539

    Google Scholar 

  • —— (1974) Chemical composition and stability of violarite. Econ Geol 69: 391–392

    Google Scholar 

  • Morimoto N, Gyobu A, Mukaiyama H, Izawa E (1975) Crystallography and stability of pyrrhotites. Econ Geol 70: 824–833

    Google Scholar 

  • Naldrett AJ (1969) A portion of the system Fe-S-O between 900 °C and 1080 °C and its application to sulphide ore magmas. J Petrol 10: 171–201

    Google Scholar 

  • —— (1979) Ni-Cu sulfide deposits: magmatic or hydrothermal? A response and a discussion. Econ Geol 74: 1520–1528

    Google Scholar 

  • — (1981) Nickel sulfide deposits: classification, composition and genesis. Econ Geol 75th Anniv Volume 628-685

  • O'Nions RK, Hamilton PJ, Hooker PJ (1983) A Nd isotope investigation of sediments related to crustal development in the British Isles. Earth Planet Sci Lett 63: 229–340

    Google Scholar 

  • Parker ME (1977) Geophysical surveys around Talnotry mine, Kirkcudbrightshire, Scotland. Min Rec Prog Rep Inst Geol Sci no 10

  • Parslow GR (1968) The physical and structural features of the Cairnsmore of Fleet granite and its aureole. Scott J Geol 4: 91–108

    Google Scholar 

  • Phillips WEA, Stillman CJ, Murphy T (1976) A Caledonian plate tectonic model. J Geol Soc London 132: 41–59

    Google Scholar 

  • Radley EG (1924) Lab no 702, p 134 in Sum. Prog Geol Surv GB for 1923. HMSO.

  • Rudashevsky NS, Mitenkov GA, Karpenkov AM, Shishkin NN (1977) Silver containing pentlandite Ag(Fe3,Ni)8S8 the independent mineral species argentopentlandite [in Russian]. Zapiski Vses Miner Obshch 688–691

  • Russell A (c. 1917) Unpublished notes “Talnotry Nickel mine, Newton Stewart, Kirkcudbrightshiren. British Museum (Natural History).

  • Russell MJ (1985) The evolution of the Scottish mineral sub-province. Scott J Geol 21: 513–545

    Google Scholar 

  • Scott SD, Gasparini E (1973) Argentian pentlandite (Fe,Ni)8AgS8 from Bird River, Manitoba. Can Min 12: 165–168

    Google Scholar 

  • —— (1973) Sphalerite composition in the Zn-Fe-S system below 300°C. Econ Geol 68: 475–479

    Google Scholar 

  • Tindle AG, Pearce JA (1983) Assimilation and partial melting of continental crust: evidence from the mineralogy and geochemistry of autoliths and xenoliths. Lithos 16: 185–202

    Google Scholar 

  • Vaughan DJ, Schwarz EJ, Owens DR (1971) Pyrrhotites from the Strathcona mine, Sudbury, Canada; A thermomagnetic and mineralogical study. Econ Geol 66: 1131–1144

    Google Scholar 

  • Vinogradov AP (1962) Average content of chemical elements in the principal types of igneous rock of the Earths Crust. Geochemistry, Ann Arbor 7: 641–664

    Google Scholar 

  • Vinogradova RA, Bochek LI, Sveshnikova OL, Sandomirskaya SM, Krutov GA, Kaspar P (1982) Composition, x-ray structural characteristics and optical properties of gersdorffite [in Russian]. Nov Dannye o Minerlakh, Akad Nauk SSSR 30: 53–63

    Google Scholar 

  • Wilson GV, Fleet JS (1921) The lead, zinc, copper and nickel ores of Scotland. Mem Geol Surv Spec Rep Min Res GB 17, 160 pp

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley, C.J., Symes, R.F. & Jones, G.C. Nickel-copper mineralization at Talnotry, Newton Stewart, Scotland. Mineralogy and Petrology 37, 293–313 (1987). https://doi.org/10.1007/BF01161822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161822

Keywords

Navigation