Skip to main content
Log in

Platinum-group minerals in the chromitites from the Great Serpentinite Belt, NSW, Australia

Platingruppen-Minerale in den Chromititen aus dem Great Serpentinite Belt, NSW, Australien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Occurrences of platinum-group minerals (PGM) from chromitites of the Great Serpentinite Belt of New South Wales are reported for the first time in this study. On the basis of their major components, these minerals are classified into various groups, including sulphides, sulpharsenides, arsenides, antimonides, amalgams, and alloys of Os-Ir-Ru-(Fe Ni), Pd Cu Sn, Ni-Fe-Pt-Pd, Pd-Pb-Cu, and Rh-Sn-Cu. They are present: (i) as inclusions within chromite, (ii) in interstitial silicates, (iii) in ferritchromite and (iv) along fractures in chromite. Ir-subgroup (Ir, Os, Ru) minerals (IPGM) dominate podiform chromitites hosted by upper mantle serpentinised harzburgite, whereas Pdsubgroup (Pd, Pt, Rh) minerals (PPGM) characterise banded chromitites in cumulates of the overlying magmatic series. A highly brecciated podiform chromitite, however, is distinguished by abundant disseminated PPGM containing Sb ± Cu. Primary magmatic PGM in podiform chromitite comprise IPGM sulphides, sulpharsenides, and alloys, whereas hydrothermal PGM are characterised by PPGM alloys with Hg, Sb, and Cu. Dominantly hydrothermal PGM in the banded chromitites formed by remobilisation of primary magmatic PGM during serpentinisation. The contrast in PGM association is related to the crystallisation of the host chromitites; IPGM crystallised early from the parental magma along with podiform chromitite, but PPGM formed later at lower temperatures during crystallisation of banded chromitite.[▭

Zusammenfassung

In dieser Studie wird zum ersten Mal über das Vorkommen von PlatingruppenMineralen (PGM) in Chromititen der Great Serpentinite Belt berichtet. Die auftretenden Mineralphasen umfassen Sulfide, Sulfarsenide, Arsenide, Antimonide, Amalgam und Legierungen von Os-Ir-(Fe-Ni), Pd-Cu-Sn, Ni-Fe-Pt-Pd, Pd-Pb-Cu and Rh-Sn-Cu. Sie treten als i) Einschlüsse im Chromit, ii) in Silikaten der Grundmasse, iii) Im Ferritchromit und iv) in Frakturen des Chromit auf. Mineralphasen der Ir-Untergruppe (IPGM = Ir, Os, Ru) dominieren in podiformen Chromititen, die in serpentinisierten Harzburgiten des oberen Mantels auftreten. Minerale der Pd-Untergruppe (PPGM = Pd, Pt, Rh) charakterisieren gebänderte Chromitite, die innerhalb der über der Mantelsequenz liegenden Kumulatabfolge vorkommen. Ein deutlich brekzierter podiformer Chromitit unterscheidet sich von den übrigen podiformen Chromititen durch häufiges Auftreten von disseminierten PPGM, die auch Sb ± Cu führen. Primär magmatisch gebildete PGM in podiformen Chromititen umfassen IPGM in Form von Sulfide, Sulfarsenide und Legierungen, während PPGM als Legierungen mit Hg, Sb und Cu hydrothermale Phasen darstellen. Die hydrothermalen PGM in den gebänderten Chromititen wurden überwiegend durch Remobilisation aus primär magmatischen PGM während der Serpentinisierung gebildet. Der markante Unterschied in den während der Serpentinisierung gebildet. Der markante nterschied in den PGM-Assoziationen steht mit der Kristallisation des jeweiligen Chromitit in Verbindung: Während IPGM früh aus dem Magma zusammen mit den podiformen Chromititen kristallisierten, wurden PPGM später unter niedrigeren Temperaturen während der Kristallisation der gebänderten Chromitite gebildet.[▭

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augé T (1985) Platinum-group-mineral inclusions in ophiolitic chromitite from the Vourinos complex, Greece. Can Mineral 23: 163–171

    Google Scholar 

  • — (1988) Platinum-group minerals in the Tiebaghi and Vourinos ophiolitic complexes: genetic implications. Can Mineral 26: 177–192

    Google Scholar 

  • Bridges JC, Prichard HM (1991) The mineralogical and geochemical behaviour of PGE in podiform chromitites from Braganca, N. Portugal. In:Barnes SJ (ed) 6th Internat Platinum Symp Abstr: 12

  • Burgath K-P (1988) Platinum-group minerals in ophiolitic chromitites and alluvial placer deposits, Meratus-Bobaris area, southeast Kalimantan. In:Prichard HM, Potts PJ, Bowles JFW Cribb SJ (eds) Geo-Platinum 87, Elsevier Applied Science, London, pp 383–403

    Google Scholar 

  • Cabri LJ, Blank H, Goresy AE, Laflamme JHG, Nobiling R, Sizcoric MB, Traxel K (1984) Quantitative trace-element analyses of sulfides from Sudbury and Stillwater by proton microprobe. Can Mineral 22: 521–542

    Google Scholar 

  • Coleman RG (1977) Ophiolites: Ancient oceanic lithosphere? Minerals and Rocks 12. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Corrivaux L, Laflamme JHG (1990) Minéralogie des éléments du group du platine dans les chromitites de l'ophiolite Thetford Mines, Quebec. Can Mineral28: 579–595

    Google Scholar 

  • Crocket JH, Fleet ME, Stone WE (1992) Experimental partitioning of osmium, iridium and gold between basalt melt and sulphide liquid at 1300°C. Austral J Earth Sci 39: 427–432

    Google Scholar 

  • Crook KAW, Felton EA (1975) Tasman geosycline greenstones and ophiolites. J Geol Soc Austral 22: 117–131

    Google Scholar 

  • Desborough GA, Criddle AJ (1984) Bowieite: a new rhodium-iridium-platinum sulfide in platinum-alloy nuggets, Goodnews Bay, Alaska. Can Mineral 22: 543–552

    Google Scholar 

  • Edwards SJ (1990) Harzburgite and refractory melts in the Lewis Hills massif Bay of Islands ophiolite complex: the base-metals and precious-metals story. Can Mineral 28: 537–542

    Google Scholar 

  • Fisk MR, Bence AE (1980) Experimental crystallisation of chrome spinel in FAMOUS basalt 527-1-1. Earth Planet Sci Lett 48: 111–123

    Google Scholar 

  • Fleet ME, Stone WE, Crocket JH (1991) Partitioning of palladium, Iridium, and platinum between sulfide liquid and basalt melt: effects of melt composition, concentration, and oxygen fugacity. Geochim Cosmochim Acta 55: 2545–2554

    Google Scholar 

  • Greenbaum D (1977) The chromitiferous rocks of the Troodos ophiolite complex, Cyprus. Econ Geo172: 1175–1194

    Google Scholar 

  • Golding HG (1975) Relict textures of chromitites from New South Wales. J Geol Soc Austral 22: 397–412

    Google Scholar 

  • Hulbert LJ, von Gruenewaldt G (1985) Textural and compositional features of chromite in the Lower and Critical zones of the Bushveld complex south of Potgietersrus. Econ Geol 80:872–895

    Google Scholar 

  • Konstantopoulou G, Economou-Eliopoulos M (1991) Distribution of platinum-group elements and gold within the Vourinos chromitite ores, Greece. Econ Geol 86: 1672–1682

    Google Scholar 

  • Lago BL, Rabinowicz M, Nicolas A (1982) Podiform chromite ore bodies: a genetic model. J Petrol 23: 103–125

    Google Scholar 

  • Lesher CM (1989) Komatiite-associated nickel sulfide deposits. In:Whitney JA, Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4: 45–101

  • Lorand JP (1985) The behavior of the Upper Mantle sulfide component during the incipient alteration of “alpine”-type peridotites as illustrated by the Beni Bousera (Northern Morocco) and Ronda (Southern Spain) ultramatc bodies. Tschermaks Min Petr Mitt 34:183–209

    Google Scholar 

  • — (1987) Cu-Fe-Ni-S mineral assemblages in upper-mantle peridotites from the Table Mountain and Blow-Me-Down Mountain ophiolite massifs (Bay of Islands area, Newfoundland): their relationships with fluids and silicate melts. Lithos 20: 59–76

    Google Scholar 

  • Lorand JP, Cottin JY (1987) Na-Ti-Zr-H2O-rich mineral inclusions indicating postcumulus chrome-spinel dissolution and recrystallisation in the Western Laouni mafc intrusion, Algeria. Contrib Mineral Petrol 97: 251–263

    Google Scholar 

  • Lorand JP, Ceuleneer G (1989) Silicate and base-metal sulfide inclusions in chromites from the Maqsad area (Oman ophiolite, Gulf of Oman): A model for entrapment. Lithos 22: 173–190

    Google Scholar 

  • Lord RA, Prichard HM (1991) Magmatic distribution and fractionation of platinum group elements in the Shetland ophiolite complex. In:Barnes SJ (ed) 6th Internat Platinum Symp Abstr: 32–33

  • Mathez EA, Peach CL (1989) Geochemistry of platinum-group elements in mafc and ultramatic rocks. In:Whitney JA, Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4: 33–43

  • McElduff B, StumpfflEF (1990) Platinum-group minerals from the Troodos ophiolite, Cyprus. Mineral Petrol 42: 211–232

    Google Scholar 

  • Mountain BW, Wood SA (1988) Solubility and transport of platinum-group elements in hydrothermal solutions: thermodynamic and physical chemical constraints. In:Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geo-Platinum 87, Elsevier Applied Science, London, pp 57–82

    Google Scholar 

  • Murck BW, Campbell IH (1986) The effects of temperature, oxygen fugacity and melt composition on the behavior of chromium in basic and ultrabasic melts. Geochim Cosmochim Acta 50:1871–1887

    Google Scholar 

  • Naldrett AJ, Lehmann J (1988) Spinel non-stoichiometry as the explanation for Ni-, Cu- and PGE-enriched sulphides in chromitites. In:Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geo-Platinum 87, Elsevier Applied Science, London, pp 93–109

    Google Scholar 

  • Naldrett AJ (1989a) Magmatic sulfide deposits. Oxford Mono Geol Geophys 14:17–37

    Google Scholar 

  • —(1989b) Ores associated with flood basalts. In:Whitney JA, Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4:103–118

  • Naldrett AJ, von Gruenewaldt G (1989) Association of platinum-group elements with chromitite in layered intrusions and ophiolites. Econ Geol 84: 180–187

    Google Scholar 

  • Nicolas A (1989) Structures of ophiolites and dynamics of oceanic lithosphere. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Offler R, Hand M (1988) Metamorphism in the forearc and subduction complex sequences of the southern New England Fold Belt. In:Kleeman JD (ed) New England Orogen Tectonics and Metallogenesis. Dept Geol Geophys, Univ New England: 78–86

  • Ohnenstetter D, Watkinson DH, Jones PC, Talkington R (1986) Cryptic compositional variation in laurite and enclosing chromite from the Bird River Sill, Manitoba. Econ Geol 81: 1159–1168

    Google Scholar 

  • Orberger B, Friedrich G, Woermann E (1988) Platinum-group element mineralisation in the ultramafic sequence of the Acoje ophiolite block, Zambales, Philippines. In:Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geo-Platinum 87, Elsevier Applied Science, London, pp 361–380

    Google Scholar 

  • Pooley GD (1979) Petrological studies in the Great Serpentinite Belt of NSW near Upper Bingara. PhD thesis, Univ of NSWPrichard HM, Neary CR (1991) Platinum-group minerals in the chromitites of the Al'Ays complex, Saudi Arabia. In:Barnes SJ (ed) 6th Internat Platinum Symp Abstr: 45–46

  • Prichard HM, Tarkian M (1988) Platinum and palladium minerals from two PGE-rich localities in the Shetland ophiolite complex. Can Mineral 26: 979–990

    Google Scholar 

  • Roeder PI, Reynolds I (1991) Crystallisation of chromite and chromium solubility in basaltic melts. J Petrol 32: 909–934

    Google Scholar 

  • Stockman H W, Hlava PF (1984) Platinum-group minerals in alpine chromitites from southwestern Oregon. Econ Geol 79: 491–508

    Google Scholar 

  • Thalhammer OAR, Prochaska W, Mühlhans HW (1990)Solid inclusions in chrome-spinels and platinum group element concentrations from the Hochgróssen and Kraubath ultramafic massifs (Austria), their relationship to metamorphism and serpentinisation. Contrib Mineral Petrol 105: 66–80

    Google Scholar 

  • Talkington RW, Watkinson DH, Jones PC (1984) Platinum group minerals and other solid inclusions in chromite of ophiolitic complexes: occurrences and petrological significance. Tschermaks Min. Petr Mitt 32:285–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, K., Seccombe, P.K. Platinum-group minerals in the chromitites from the Great Serpentinite Belt, NSW, Australia. Mineralogy and Petrology 47, 263–286 (1993). https://doi.org/10.1007/BF01161571

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161571

Keywords

Navigation