Skip to main content
Log in

Direct computation of second-order SCF properties of large molecules on workstation computers with an application to large carbon clusters

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The ab initio SCF computation of second-order properties of large molecules (with 50 atoms or more) on workstation computers is demonstrated for static dipole polarizabilities and nuclear magneting shieldings. The magnetic shieldings are calculated on the basis of gauge including atomic orbitals (GIAO). Algorithmic advances (semi-direct algorithms with efficient integral pre-screening, and use of a quadratically convergent functional for the polarizabilities) are presented together with an illustrative application to the fullerenes C60 and C70.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roothaan CCJ (1951) Rev Mod Phys 23:69; Hall GG (1951) Proc Roy Soc A205:541

    Google Scholar 

  2. Stevens RM, Pitzer R, Lipscomb WN (1963) J Chem Phys 38:550

    Google Scholar 

  3. Ditchfield R (1974) Mol Phys 27:789

    Google Scholar 

  4. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Google Scholar 

  5. Kutzelnigg W, Fleischer U, Schindler M (1990) in: Diehl P, Fluck E, Günther H, Kosfeld R, Seelig J (eds) NMR basic principles and progress, Vol 23, p 165, Springer-Verlag, Berlin Heidelberg; see also Meier U, Schindler M, v Wüllen Ch (1992) J Comput Chem 13:551

    Google Scholar 

  6. Feyereisen M, Nichols J, Oddershede J, Simons J (1992) J Chem Phys 96:2978

    Google Scholar 

  7. Kirtman B, Hasan M (1992) J Chem Phys 96:470

    Google Scholar 

  8. Fowler PW, Lazzaretti P, Zanasi R (1990) Chem Phys Lett 165:79

    Google Scholar 

  9. Fowler PW, Lazzaretti P, Malagoli M, Zanasi R (1991) Chem Phys Lett 179:174

    Google Scholar 

  10. Schindler M (1987) J Am Chem Soc 109:1020

    Google Scholar 

  11. Werner HJ, Meyer W (1976) Mol Phys 31:855

    Google Scholar 

  12. Spackman MA (1989) J Phys Chem 93:7594

    Google Scholar 

  13. London F (1937) J Phys Radium 8:397

    Google Scholar 

  14. Kutzelnigg W (1980) Isr J Chem 19:193; Schindler M, Kutzelnigg W (1982) J Chem Phys 76:1919; Schindler M, Kutzelnigg W (1983) J Am Chem Soc 105:1360; Schindler M, Kutzelnigg W (1983) Mol Phys 48:781

    Google Scholar 

  15. Hansen AE, Bouman TD (1985) J Chem Phys 82:5035; Hansen AE, Bouman TD (1989) J Chem Phys 91:3552

    Google Scholar 

  16. Lüthi HP, Almlöf J (1987) Chem Phys Lett 135:357; van Alsenoy C, Leustra ATH, Geise HJ (1989) J Comput Chem 10:302; Kölmel C, Ahlrichs R (1990) J Phys Chem 94:5536; Scuseria G (1991) Chem Phys Lett 176:423

    Google Scholar 

  17. Almlöf J, Faegri Jr K, Korsell K (1982) J Comput Chem 3:385

    Google Scholar 

  18. van Alsenoy C (1988) J Comput Chem 9:620

    Google Scholar 

  19. Häser M, Ahlrichs R (1989) J Comput Chem 10:104

    Google Scholar 

  20. Frisch MJ, Head-Gordon M, Pople JA (1988) Chem Phys Lett 153:503

    Google Scholar 

  21. Almlöf J, Saebø S (1989) Chem Phys Lett 154:83

    Google Scholar 

  22. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 154:165

    Google Scholar 

  23. Osamura Y, Yamaguchi Y, Saxe P, Fox DJ, Vincent MA, Schaefer III HF (1983) J Mol Struct (THEOCHEM) 103:183; Dodds JL, McWeeny R, Sadlej AJ (1977) Mol Phys 34:1779; Pulay P (1983) J Chem Phys 78:5043

    Google Scholar 

  24. Moccia R (1970) Chem Phys Lett 5:260

    Google Scholar 

  25. Pulay P (1987) Adv Chem Phys 69:241

    Google Scholar 

  26. see, for example, Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Int J Quant Chem (Quant Chem Symposia) 13:225

    Google Scholar 

  27. Stiefel EL (1958) Natl Bur Stand Appl Math Ser 49:1

    Google Scholar 

  28. Wormer PES, Visser F, Paldus J (1982) J Comput Phys 48:23

    Google Scholar 

  29. Sellers HL (1986) Int J Quantum Chem 30:433; King HF, Kormonicki A (1986) J Chem Phys 84:5645

    Google Scholar 

  30. Helgaker TU, Almlöf J, Jensen HJA, Jørgensen P (1986) J Chem Phys 84:6266

    Google Scholar 

  31. Chambaud G, Levy B, Millie P (1978) Theoret Chim Acta (Berl) 48:103

    Google Scholar 

  32. Horn H, Weiß H, Häser M, Ehrig M, Alhrichs R (1991) J Comput Chem 12:1058

    Google Scholar 

  33. Lazzaretti P, Zanasi R (1980) J Chem Phys 72:6768

    Google Scholar 

  34. Takada T, Dupuis M, King HF (1983) J Comput Chem 4:234

    Google Scholar 

  35. Häser M (1991) J Chem Phys 95:8259

    Google Scholar 

  36. Dacre PD (1970) Chem Phys Lett 7:47; Elder M (1973) Int J Quant Chem 7:75; Dupuis M, King HF (1977) Int J Quant Chem 11:613

    Google Scholar 

  37. Kroto HW, Heath JR, O'Brian SC, Curl RF, Smalley RE (1985) Nature 318:162

    Google Scholar 

  38. Krätschmer W, Fostiropoulos K, Huffmann DR (1990) Chem Phys Lett 170:167; Krätschmer W, Lamb LD, Fostiropoulos K, Huffmann DR (1990) Nature 347:354

    Google Scholar 

  39. Häser M, Almlöf J, Scuseria GE (1991) Chem Phys Lett 181:497

    Google Scholar 

  40. Hedberg K, Hedberg L, Bethune DS, Brown CA, Dorn HC, Johnson RD, de Vries M (1991) Science 254:410

    Google Scholar 

  41. Scuseria GE (1991) Chem Phys Lett 176:423

    Google Scholar 

  42. Liu S, Lu Y, Kappes MM, Ibers JA (1991) Science 254:408

    Google Scholar 

  43. Taylor R, Hare JP, Abdul-Sala AK, Kroto HW (1990) J Chem Soc Chem Commun 1423

  44. Ajie H, Alvarez MM, Anz SJ, Beck RD, Diederich F, Fostiropoulos K, Huffmann DR, Krätschmer W, Rubin Y, Shriver KE, Sensharma D, Whetten RL (1990) J Phys Chem 94:8630

    Google Scholar 

  45. Jameson AK, Jameson CJ (1987) Chem Phys Lett 134:461

    Google Scholar 

  46. Scuseria GE (1991) Chem Phys Lett 180:451

    Google Scholar 

  47. Lazzaretti P, Malagoli M, Zanasi R (1991) THEOCHEM 234:127

    Google Scholar 

  48. Häser M, Schneider U, Ahlrichs R, J Am Chem Soc (submitted)

  49. Gauss J (1992) Chem Phys Lett 191:674 and references therein

    Google Scholar 

  50. v Wüllen C, Kutzelnigg W (1991) presented at the Symposium für Theoretische Chemie, Bielefeld

  51. Bishop DM (1987) J Chem Phys 86:5613

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häser, M., Ahlrichs, R., Baron, H.P. et al. Direct computation of second-order SCF properties of large molecules on workstation computers with an application to large carbon clusters. Theoret. Chim. Acta 83, 455–470 (1992). https://doi.org/10.1007/BF01113068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113068

Key words

Navigation