Skip to main content
Log in

Das Spektrum von Verbandsoperatoren in Banachverbänden

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Ando, T.: Positive linear operators in semi-ordered linear spaces. J. Fac. Sci. Hokkaido Univ. Ser. I.13, 214–228 (1957).

    Google Scholar 

  2. Bachman, G.: Elements of abstract harmonic analysis. New York and London: Academic Press 1964.

    Google Scholar 

  3. Bonsall, F.F., Tomiuk, B.J.: The semi-algebra generated by a compact linear operator. Proc. Edinburgh Math. Soc.14 (S. II), 177–196 (1965).

    Google Scholar 

  4. Dunford, N., Schwartz, J. T.: Linear operators. Part I: General theory. New York: Intersciece Publ. 1958.

    Google Scholar 

  5. Frobenius, G.: Über Matrizen aus positiven Elementen. S.-Ber. Preuss. Akad. Wiss. Berlin1908, 471–476;1909, 514–518.

  6. Frobenius, G.: Über Matrizen aus nicht negativen Elementen, S.-Ber. Press. Akad. Wiss. Berlin1912, 456–477.

  7. Kakutani, S.: Concrete representation of abstract (L)-spaces and the mean ergodic theorem. Ann. of Math. (2)42, 523–537 (1941).

    Google Scholar 

  8. Karlin, S.: Positive operators. J. Math. Mech.8, 907–938 (1959).

    Google Scholar 

  9. Krein, M. G., Rutman, M. A.: Linear operators leaving invariant a cone in a Banach space. Uspehi Mat. Nauk (N. S.)3, No. 1 (23), 3–95 (1948) (Russisch). Auch Amer. Math. Soc. Translat. Ser. 1,10, 199–325 (1962).

    Google Scholar 

  10. Kriger, H.-J.: Beiträge zur Theorie positiver Operatoren. Schriftenreihe der Institute für Mathematik bei der Deutschen Akad. der Wiss. Berlin. Reihe A: Reine Mathematik. Heft6, 1–82 (1969).

    Google Scholar 

  11. Lotz, H. P.: Über das Spektrum positiver Opratoren. Math. Z.108, 15–32 (1968).

    Google Scholar 

  12. —, Schaefer, H. H.: Über einen Satz von F. Niiro und I. Sawashima. Math. Z.108, 33–36 (1968).

    Google Scholar 

  13. Rota, G.-C.: On the eigenvalues of positive operators. Bull. Amer. Math. Soc.67, 556–558 (1961).

    Google Scholar 

  14. Schaefer, H. H.: Topological vector spaces. New York: Macmillan 1966.

    Google Scholar 

  15. —: Convex cones and spectral theory. Proc. Sympos. Pure Math., vol. VII. Convexity, 451–471. Providence, R. I. 1963.

    Google Scholar 

  16. —: Some spectral properties of positive linear operators. Pacific J. Math.10, 1009–1019 (1960).

    Google Scholar 

  17. —: Spektraleigenschaften positiver Operatoren. Math. Z.82, 303–313 (1963).

    Google Scholar 

  18. —: On the point spectrum of positive operators. Proc. Amer. Math. Soc.15, 56–60 (1964).

    Google Scholar 

  19. —: Über das Randspektrum positiver Operatoren. Math. Ann.162, 289–293 (1965).

    Google Scholar 

  20. —: Invariant ideals of positive operators inC(X), I. Illinois J. Math.11, 703–715 (1967).

    Google Scholar 

  21. —: Invariant ideals of positive operators inC(X). II. Illinois J. Math.12, 525–538 (1968).

    Google Scholar 

  22. Taylor, A. E.: Introduction to functional analysis. New York and London: John Wiley & Sons 1958.

    Google Scholar 

  23. Taylor, J. L.: The structure of convolution measure algebras. Trans. Amer. Math. Soc.119, 150–166 (1965).

    Google Scholar 

  24. Wielandt, H.: Unzerlegbare, nicht negative Matrizen. Math. Z.52, 642–648 (1950).

    Google Scholar 

  25. Wolff, M.: Über das Spektrum von Homomorphismen in Banach-Verbänden. Math. Ann.182, 161–169 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffold, E. Das Spektrum von Verbandsoperatoren in Banachverbänden. Math Z 123, 177–190 (1971). https://doi.org/10.1007/BF01110116

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01110116