Skip to main content

Advertisement

Log in

Carbohydrate and lipid components of hyphae and conidia of human pathogenFonsecaea pedrosoi

  • Human And Animal Mycology
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The carbohydrate and lipid components of mycelium and conidia ofFonsecaea pedrosoi (Brumpt) were analysed by paper, thin-layer and gas-chromatography, mass spectrometry and ultraviolet spectroscopy. Glucose, mannose, galactofuranose, rhamnose and glucosamine were polysaccharide components identified inF. pedrosoi. Significant changes in the carbohydrate pattern occurred during the conversion of mycelium into conidia. Rhamnose was predominant in conidia whereas galactose was prominent in mycelium. Palmitic, stearic, oleic, linoleic, and arachidonic acids were the fatty acids identified in the total lipid fraction. Palmitic and oleic acids were major fatty acids. Marked alterations in the fatty acid constituents were observed between the cell types ofF. pedrosoi. Arachidonic acid was detected only in conidia and linoleic acid was preferentially identified in mycelium. Differences in the sterol composition was also associated with morphogenesis inF. pedrosoi. Two main sterols, ergosterol and another less polar sterol, not fully characterized, were found in mycelium whereas in conidia only the latter sterol was present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butterfield W. Jong SC. Effect of carbon source on conidiogenesis inFonsecaea dermatidis agent of chromomycosis. Mycopathologia 1976; 58: 59–62.

    Google Scholar 

  2. Travassos LR, Gorin JPA, Lloyd KO. Comparison of the rhamnomannas from the human pathogenSporothrix schenkii with those from theCeratocystis species. Infec Immun 1973; 8: 685–93.

    Google Scholar 

  3. Gorin PAJ, Haskins RH, Travassos LR, Mendonça-Previato L. Further studies on the rhamnomannans and acid rhamnomannans ofSporothrix schenckii andCeratocystis stenoceras. Carbohydr Res 1977; 55: 21–33.

    Google Scholar 

  4. Alviano CS, Gorin PAJ, Travassos LR. Surface polysaccharides of phytopathogenic strains ofCeratocystis paradoxa andCeratocytis fimbriata isolated from different hosts. Exp Mycol 1979; 3: 174–87.

    Google Scholar 

  5. Barreto-Bergter EM, Travassos LR, Gorin PAJ. Chemical structure of the D-Galacto-D-mannan component from hyphae ofAspergillus niger andAspergillus sp. Carbohydr Res 1980; 86: 273–85.

    Google Scholar 

  6. Lloyd KO. Isolation, characterization and partial structure of petidogalactomannans from the yeast form ofCladosporium werneckii. Biochemistry 1970; 9: 3446–53.

    Google Scholar 

  7. Lloyd KO, Travassos LR. Immunochemical studies on arhamno-D.mannans ofSporothrix schenckii and related fungi by use of rabbit and human antisera. Carb Res 1975, 40: 89–97.

    Google Scholar 

  8. Strobel G, van Alfen H, Hapner KD, McNineil M, Albersheim P. Some phytotoxic glycopeptides fromCeratocystis ulmi, the Dutch Elm disease pathogen. Biochim Biophys Acta 1978; 538: 60–75.

    Google Scholar 

  9. Travassos LR, Souza W, Mendonça-Previato L, Lloyd KO. Location and biochemical nature of surface components reacting with Conanvalin A in different cell typesSporothrix schenckii. Exp Mycol 1977; 1: 293–305.

    Google Scholar 

  10. Souza ET, Silva-Filho FC, Souza W, Alviano CS, Angluster J, Travassos LR. Identification of sialic acids on the cell surface of hyphae and conidia of the humanFonsecaea pedrosoi. J Med Vet Mycol 1986; 24: 145–53.

    Google Scholar 

  11. Sakai S. Tanaka S, Kumusuka T, Momoki I, Sugayam L. Antitumor action of some glucans, specially on its correlation to their chemical structure. Gann 1968; 59: 507–12.

    Google Scholar 

  12. Singh PP, Whistler RL, Tokuzen R. Scleroglucan, and antitumor polysaccharide fromSclerotium glucanicum. Carb Res 1974; 37: 245–47.

    Google Scholar 

  13. Steven M, Steven P, Cook JA, Ichnose H, Di Luzio NR. Protective effect of the immunostimulant glucan on sporototrichisis infection of mice. J Reticuloendothel Soc 1976, 20: 66a.

  14. Whistler RL, Bushway AA, Singh PP, Nakahara W, Tokuzen R. Non-cytotoxic, antitumos polysaccharides. Adv Carbohydr Chem 1976; 32: 235–75.

    Google Scholar 

  15. Sarkar S, Menge AC. Cell antigens recognized by rabbit antibodies specific for oligomannosyl determinants. J Supramol Struct 1977; 6: 617–32.

    Google Scholar 

  16. Wallach DFG. Plasma membrane of eukaryotic cells: some general principles. In: The membrane pathobiology of tropical diseases. Basel, Switzerland: Schwabe Co AG, 1979: 1–34.

    Google Scholar 

  17. Hakmori SI. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Ann Rev Biochem 1981; 50: 733–64.

    Google Scholar 

  18. Sumner JL, Morgan ED, Evans HC. The effect of growth temperature on the fatty acid composition of fungi in the orderMucorales. Can J Microbiol 1969; 15: 515–20.

    Google Scholar 

  19. Sumner JL, Colotelo N. The fatty acid composition of sclerotia. Can J Microbiol 1970; 16: 1171–78.

    Google Scholar 

  20. Sumner JL, Evans HC. The fatty acid composition ofDactylaria andScolecobasidium. Can J Microbiol 1971; 17: 7–11.

    Google Scholar 

  21. Deven JM, Manocha MS. Effect of various conditions on the fatty acid and lipid composition ofChoanephora cucurbitarum. Can J Microbiol 1976; 22: 443–49.

    Google Scholar 

  22. Kritchevsky D. Sterols. In: Florkin M, Stotz EH (eds), Comprehensive biochemistry, vol 100 New York: Elsevier 1963: 14–15.

    Google Scholar 

  23. Vacheron MJ, Michel G. Sterol and fatty acid composition of two strains ofAspergillus flavus Phytochemistry 1968; 7: 1645–51.

  24. Oliveira RG, Resende MA, Lopes CF, Cisalpino EO. Isolamento e identificacao dos agentes da cromoblastomicose em Belo Horizonte. Rev Soc Bras Med Trop 1973; 7: 7–10.

    Google Scholar 

  25. Booth C. Fungal culture media. In: Methods in microbiology, vol 4. New York: Academic Press 1971: 49–94.

    Google Scholar 

  26. Morrison IM. Hydrolysis of plant cell walls with trifluroacetic acid. Phytochemistry 1988; 27: 1097–100.

    Google Scholar 

  27. Sawardeker JS, Sloneker JH, Jeanes A. Quantitative determination of monosaccharides as their acetates by gas-liquid chromatography. Anal Chem 1965; 37: 1602–604.

    Google Scholar 

  28. Porschmann J, Welsh T, Herzschuh R, Engewald W. Analysis of fatty acids by combined application of chemical, chromatographic and spectroscopic methods. J Chromat 1982; 241: 73–87.

    Google Scholar 

  29. Dias Filho BP, Alviano CS, De Souza W, Angluster J. Fatty acids and sterols ofTritrichomonas foetus. Comp Biochem Physiol 1985; 81B: 515–18.

    Google Scholar 

  30. Adams BG, Parks LW. Evidence for dual physiological forms of ergosterol inSaccharomyces cerevisiae. J Cell Physiol 1967; 70: 161–68.

    Google Scholar 

  31. Stahl E. Thin-layer Chromatography, 2nd ed. Berlin: Springer-Verlag, 1969: 861.

    Google Scholar 

  32. Johnston JD, Gautschi F, Block K. Isolation of lanosterol from “isocholesterol”. J Biol Chem 1957; 224: 185–90.

    Google Scholar 

  33. Bacon JSD, Farmer VC, Jones D, Taylor IF. The glucan components of the cell wall of baker's yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure. Biochem J 1969; 144: 557–67.

    Google Scholar 

  34. Kanetsuna F, Carbonell Lm. Cell Wall glucans of the yeast and mycelial forms ofParacoccidioides brasiliensis. J Bacteriol 1970; 101: 675–80.

    Google Scholar 

  35. Azuma I, Kanetsuna F, Tanaka Y, Yamamura Y, Carbonel LM. Chemical and immunological properties of galactomannans obtained fromHistoplasma duboisii, Histoplasma capsulatum, Paracoccidioides brasiliensis andBlastomyces dermatitidis. Mycopathol Mycol Appl 1974; 54: 111–25.

    Google Scholar 

  36. Ballou CE. Some aspects of the structure, immunochemistry and genetic control of yeast mannans. Adv Enzymol 1974; 40: 239–70.

    Google Scholar 

  37. Phaff HJ. Enzymatic yeast cell wall degradation. Adv Chem Ser 1977; 160: 244–82.

    Google Scholar 

  38. Suzuki S, Takeda N. Immunochemical studies on the galactomannans isolated from mycelia and culture broths of threeHormodendrum strains. Infec Immun 1977; 17: 483–90.

    Google Scholar 

  39. Travassos LR, Lloyd KO.Sporothrix schenckii and related species of Ceratocystis. Microbiol Rev 1980; 44: 683–721.

    Google Scholar 

  40. Mendonça-Previato L, Gorin PAJ, Travassos LR. Galactose-containing polysaccharides from the human pathogensSporothrix schenkii andCeratocystis stenoceras. Infect Immun 1980; 29: 934–39.

    Google Scholar 

  41. Szanizzlo PJ, Cooper BH, Voges HS. Chemical composition of the hyphal walls of three chromomycosis agents. Sabouradia 1972; 10: 94–102.

    Google Scholar 

  42. Sixel JL, Esteves MJG, Angluster J, de Souza W. Localization of concanavalin A Binding sites on the cell membrane ofHerpetomonas samuelpessoai: Influence of growth conditions. Eur J Cell Biol 1978; 17: 421–432.

    Google Scholar 

  43. Esteves MJG, Alviano CS, Angluster J, de Souz W. Membrane-associated polysaccharides ofHerpetomonas samuelpessoai: influence of growth conditions. Eur J Cell Biol 1979; 20: 113–15.

    Google Scholar 

  44. Alviano CS, Farbiarz SR, De Souza W, Angluster J, Travassos LR. Characterization ofFonsecaea pedrosoi melanin. J Gen Microbiol 1991; 137: 837–44.

    Google Scholar 

  45. Farbiarz SR, Carvalho TU, Alviano CS, De Souza W. Inhibitory effects of melanin on the interaction ofFonsecaea pedrosoi with mammalian cells in vitro. J Med Vet Mycol 1992; 30: 265–73.

    Google Scholar 

  46. Rozental S, Alviano CS, De Souza W. The in vitro susceptibility ofFonsecaea pedrosoi to activated macrophages. Mycopathologia 1994; 126: 85–91.

    Google Scholar 

  47. Kanetsuna F, Carbonell LM, Azuma I, Yamamura Y. Biochemical studies on the thermal dimorphism ofParacoccidioides brasiliensis. J Bacteriol 1972; 110: 208–18.

    Google Scholar 

  48. Chopra A, Khuller GK. Lipids of Pathogenic Fungi. Prog Lipid Res 1983; 22: 189–220.

    Google Scholar 

  49. Tyrell D. The fatty acid composition of someEntomophthoraceae III. Can J Microbiol 1971; 47: 1115–18.

    Google Scholar 

  50. Tyrell D, Wheatherston J. The fatty acid composition of someEntomophthoroceae IV. The occurrence chain fatty acids in Conidiobolus species. Can J Microbiol 1976; 22: 1058–60.

    Google Scholar 

  51. Anderes LA, Finley AA, Walch HA. The lipids of an auxotrophic avirulent mutant ofCoccidioides immitis. Sabouraudia 1973; 11: 149–57.

    Google Scholar 

  52. Weete JD. Lipid Biochemistry of Fungi and Other Organisms. New York: Plenum Press, 1980.

    Google Scholar 

  53. Previato JO, Gorin PAJ, Haskins RH, Travassos LR. Soluble and insoluble glucans from different cell types of the human pathogenSporothrix schenckii. Exp Myco 1979; 3: 92–105.

    Google Scholar 

  54. Chapman D. Fluidity and fase transition of cell membranes. Biomembranes 1975; 7: 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Soares, R.M.A., Angluster, J., de Souza, W. et al. Carbohydrate and lipid components of hyphae and conidia of human pathogenFonsecaea pedrosoi . Mycopathologia 132, 71–77 (1995). https://doi.org/10.1007/BF01103778

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01103778

Key words