Skip to main content
Log in

An electron microscopic investigation of glycogen and mitochondria in developing and adult rat spinal motor neuropil

  • Published:
Journal of Neurocytology

Summary

The number of glycogen particles contained in synaptic boutons and the relative bouton volume occupied by mitochondrial profiles have been determined for the spinal motor neuropil (C6 spinal cord segment) of perinatal and adult rats. This study shows that the bouton glycogen content is much greater in perinatal specimens than in adult specimens. Conversely, the mitochondrial volume fraction of boutons progressively increases during development to reach its peak in adult specimens. These data appear to be in good agreement with the evidence of biochemical studies which show that aerobic metabolic pathways are progressively added to anaerobic mechanisms during the ontogeny of the C.N.S. In addition, the developmental period when boutons (as well as other parts of neurons) contain numerous glycogen particles corresponds to the time when the animals can survive relatively long periods of anoxia or ischemia. This relationship is discussed and it is suggested that aneuronal deposition of glycogen in perinatal animals — in contrast to the adult situation of anastrocytic one — may be an important factor in the greater resistance of perinatal mammals to anoxia and ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, W. A. andPersonne, P. (1970) The localization of glycogen in the spermatozoa of various invertebrate and vertebrate species.Journal of Cell Biology 44, 29–51.

    Google Scholar 

  • Blakemore, W. F. (1971) The ultrastructural appearance of astrocytes following thermal lesions of the rat cortex.Journal of the Neurological Sciences 12, 319–32.

    Google Scholar 

  • Bodian, D. (1964) An electron microscope study of the monkey spinal cord.Bulletin of Johns Hopkins Hospital 114, 13–119.

    Google Scholar 

  • Breckenridge, B. M. andNorman, J. H. (1962) Glycogen phosphorylase in brain.Journal of Neurochemistry 9, 383–92.

    Google Scholar 

  • Caley, D. W. (1971) Differentiation of the neural elements of the cerebral cortex in the rat. InCellular Aspects of Neural Growth and Differentiation (edited byPease, D. C.), pp. 73–102. Los Angeles: University of California Press.

    Google Scholar 

  • Campa, J. F. andEngel, W. K. (1970) Histochemistry of motor neurons and interneurons in the cat lumbar spinal cord.Neurology 20, 559–68.

    Google Scholar 

  • Campa, J. F. andEngel, W. K. (1971) Histochemical and functional correlations in anterior horn neurons of the cat spinal cord.Science 171, 198–9.

    Google Scholar 

  • Chan-Palay, V. andPalay, S. L. (1971) The synapseen marron between Golgi II neurons and mossy fibers in the rat's cerebellar cortex.Zeitschrift für Anatomie und Entwicklungsgeschichte 133, 274–87.

    Google Scholar 

  • Conradi, S. andSkoglund, S. (1969) On motoneuron synaptology in kittens.Acta Physiologica Scandinavica, Suppl. 333, 1–76.

    Google Scholar 

  • Elias, H., Hennig, A. andSchwartz, D. C. (1971) Stereology: Applications to biomedial research.Physiological Reviews 51, 158–200.

    Google Scholar 

  • Friede, R. L. (1962) The cytochemistry of normal and reactive astrocytes.Journal of Neuropathology and Experimental Neurology 21, 471–8.

    Google Scholar 

  • Fukami, Y. (1969) Two types of synaptic bulb in snake and frog spinal cord: the effect of fixation.Brain Research 14, 137–45.

    Google Scholar 

  • Guth, L. andWatson, P. K. (1968) A correlated histochemical and quantitative study on cerebral glycogen after brain injury in the rat.Experimental Neurology 22, 590–602.

    Google Scholar 

  • Himwich, H. E. (1970) Historical review. InDevelopmental Neurobiology (edited byHimwich, W. A.), pp. 22–44. Springfield, Illinois: C. C. Thomas.

    Google Scholar 

  • Jílek, L.(1970) The reaction and adaptation of the central nervous system to stagnant hypoxia and anoxia during ontogeny. InDevelopmental Neurobiology (edited byHimwich, W. A.), pp. 331–69. Springfield, Illinois: C. C. Thomas.

    Google Scholar 

  • Konishi, A. (1966) Occurrence of glycogen in developing cerebellar mossy fiber endings. An electron microscopic study.Archivum Histologicum Japonicum 27, 451–64.

    Google Scholar 

  • Laatsch, R. H. andCowan, W. M. (1967) Electron microscopic studies of the dentate gyrus of the rat. II. Degeneration of commissural afferents.Journal of Comparative Neurology 130, 241–62.

    Google Scholar 

  • Lampert, P. W., Fox, J. L. andEarle, K. M. (1966) Cerebral edema after laser radiation. An electron microscopic study.Journal of Neuropathology and Experimental Neurology 25, 531–41.

    Google Scholar 

  • Long, D. M., Mossakowski, M. J. andKlatzo, I. (1972) Glycogen accumulation in spinal cord motor neurons due to partial ischemia.Acta Neuropathologica 20, 335–47.

    Google Scholar 

  • Lowry, O. H., Passonneau, J. V., Hasselberger, F. X. andSchulz, D. W. (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain.Journal of Biological Chemistry 239, 18–30.

    Google Scholar 

  • Maxwell, D. S. andKruger, L. (1964) Electron microscopy of radiation induced laminar lesions in the cerebral cortex of the rat. InResponse of the Nervous System to Ionizing Radiation (edited byHaley, T. J. andSnider, R. S., pp. 54–83. Boston: Little, Brown and Co.

    Google Scholar 

  • Maxwell, D. S. andKruger, L. (1965) The fine structure of astrocytes in the cerebral cortex and their response to focal injury produced by heavy ionizing particles.Journal of Cell Biology 25, 141–57.

    Google Scholar 

  • McDougal, D. B., Jun., Holowach, J., Howe, M. C., Jones, E. M. andThomas, C. A. (1968) The effects of anoxia upon energy sources and selected metabolic intermediates in the brains of fish, frog, and turtle.Journal of Neurochemistry 15, 577–88.

    Google Scholar 

  • McIlwain, H. (1966)Biochemistry and the Central Nervous System pp. 287–94. Boston: Little, Brown and Co.

    Google Scholar 

  • Millonig, G. (1961) Advantages of a phosphate buffer for OsO4 solutions in fixation.Journal of Applied Physics 32, 1637.

    Google Scholar 

  • Monneron, A. andBernhard, W. (1966) Action de certaines enzymes sur des tissus inclus en epon.Journal de Microscopie 5, 697–714.

    Google Scholar 

  • Nelson, S. R., Schulz, D. W., Passonneau, J. V. andLowry, O. H. (1968) Control of glycogen levels in brain.Journal of Neurochemistry 15, 1271–9.

    Google Scholar 

  • Phelps, C. H. (1972) Barbiturate-induced glycogen accumulation in brain. An electron microscopic study.Brain Research 39, 225–34.

    Google Scholar 

  • Revel, J., Napolitano, L. andFawcett, D. (1960) Identification of glycogen in electron micrographs of thin tissue sections.Journal of Biophysical and Biochemical Cytology 8, 575–89.

    Google Scholar 

  • Reynolds, E. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy.Journal of Cell Biology 17, 208–12.

    Google Scholar 

  • Ross, L. L. andBornstein, M. B. (1969) An electron microscopic study of synaptic alterations in cultured mammalian central nervous tissues exposed to serum from animals with experimental allergic encephalomyelitis.Laboratory Investigation 20, 26–35.

    Google Scholar 

  • Schiaffino, S. andHanzlíková, V. (1972) Autophagic degradation of glycogen in skeletal muscles of the new born rat.Journal of Cell Biology 52, 41–51.

    Google Scholar 

  • Seligman, A. M., Hanker, J. S., Wasserkrug, H., Dmochowski, H. andKatzoff, L. (1965) Histochemical demonstration of some oxidized macromolecules with thiocarbohydrazide (TCH) or thiosemicarbazide (TSC) and osmium tetroxide.Journal of Histochemistry and Cytochemistry 13, 629.

    Google Scholar 

  • Sotelo, C. andPalay, S. L. (1968) The fine structure of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells.Journal of Cell Biology 36, 151–79.

    Google Scholar 

  • Stensaas, L. J. andStensaas, S. S. (1971) Light and electron microscopy of motoneurons and neuropil in the amphibian spinal cord,Brain Research 31, 67–84.

    Google Scholar 

  • Swaiman, K. F. (1970) Energy and electrolyte changes during maturation. InDevelopmental Neurobiology (edited byHimwich, W. A.) pp. 311–30. Springfield, Illinois: C. C. Thomas.

    Google Scholar 

  • Van Harreveld, A. (1964) Effects of spinal cord asphyxiation.Progress in Brain Research 12, 280–307.

    Google Scholar 

  • Vaughn, J. E. (1971) Glycogen in the synaptic boutons of developing rat spinal cord.Anatomical Record 169, 446 (Abstract).

    Google Scholar 

  • Vaughn, J. E. andPeters, A. (1966) Aldehyde fixation of nerve fibers.Journal of Anatomy (London) 100, 687 (Abstract).

    Google Scholar 

  • Venable, J. H. andCoggeshall, R. (1965) A simplified lead citrate stain for use in electron microscopy.Journal of Cell Biology 25, 407–8.

    Google Scholar 

  • Weibel, E. R., Kistler, G. S. andScherle, W. F. (1966) Practical stereological methods for morphometric cytology.Journal of Cell Biology 30, 23–38.

    Google Scholar 

  • Wuerker, R. B. (1971) Monosynaptic terminals on ventral horn cells of the rat.International Journal of Neuroscience 2, 339–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughn, J.E., Grieshaber, J.A. An electron microscopic investigation of glycogen and mitochondria in developing and adult rat spinal motor neuropil. J Neurocytol 1, 397–412 (1972). https://doi.org/10.1007/BF01102942

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01102942

Keywords

Navigation