Skip to main content
Log in

Investigation and spectral analysis of the plasma-induced ablation mechanism of dental hydroxyapatite

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Experiments on the ablation of dental substance performed with picosecond laser pulses are reported for the first time. A mode locked Nd:YLF oscillator laser was used to generate 25 ps pulses at a wavelength of 1.053µm. These were seeded and amplified to pulse energies up to 1 mJ in a regenerative amplifier laser at repetition rates up to 1 kHz. Very precise cavities were ablated in the enamel of extracted human teeth by mounting the probes onto a computer controlled 3D translation stage. Scanning electron microscopy and dye penetration tests were performed there-after. In contrast to longer pulse durations, picosecond pulses ablate with no signs of thermal damage, if the laser pulses are spatially distributed over the target. Definitions of the physical mechanisms “plasma-induced ablation” and “photodisruption” are given. Furthermore, the generated plasma spark has been spectroscopically analyzed. Excitations of calcium and sodium have been observed. From the spectra, the plasma temperature and free electron density could be estimated. By converting part of the laser energy into the second harmonic using a LiNbO3 crystal, a reference amplitude was achieved for the spectra. With this reference signal, a clear distinction could be made between spectra obtained from healthy and caries infected teeth, thus enabling a better control of caries removal in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bloembergen: IEEE J. QE-10, 375 (1974)

    Google Scholar 

  2. M.P. Felix, A.T. Ellis: Appl. Phys. Lett.19, 484 (1971)

    Google Scholar 

  3. F. Docchio: Appl. Opt.27, 3661 (1988)

    Google Scholar 

  4. F. Docchio: Appl. Opt.27, 3669 (1988)

    Google Scholar 

  5. C.E. Bell, J.A. Landt: Appl. Phys. Lett.10, 46 (1967)

    Google Scholar 

  6. B. Zysset, J.G. Fujimoto, T.F. Deutsch: Appl. Phys. B48, 139 (1989)

    Google Scholar 

  7. A. Vogel, P. Schweiger, A. Frieser, M.N. Asiyo, R. Birngruber: IEEE J. QE-26, 2240 (1990)

    Google Scholar 

  8. A.S. Epifanov: IEEE J. QE-17, 2018 (1981)

    Google Scholar 

  9. C.A. Sacchi: J. Opt. Soc. Am. B8, 337 (1991)

    Google Scholar 

  10. M.H. Niemz, T.P. Hoppeler, T. Juhasz, J.F. Bille: Lasers Light Ophthalmol.5, 149 (1993)

    Google Scholar 

  11. J.L. Boulnois: Lasers Med. Sci.1, 47 (1986)

    Google Scholar 

  12. R.H. Stern, R.F. Sognnaes: J. Dent. Res.43, 873 (1964)

    Google Scholar 

  13. L. Goldman, P. Hornby, R. Mayer, B. Goldman: Nature203, 417 (1964)

    Google Scholar 

  14. R.H. Stern, J. Vahl, R.F. Sognnaes: J. Dent. Res.51, 455 (1972)

    Google Scholar 

  15. J.W. Frame: Br. Dent. J.158, 125 (1985)

    Google Scholar 

  16. U. Keller, R. Hibst: Dtsch. Zahnärztl. Z.44, 600 (1989)

    Google Scholar 

  17. R. Hibst, U. Keller: Lasers Surg. Med.9, 338 (1989)

    Google Scholar 

  18. U. Keller, R. Hibst: Lasers Surg. Med.9, 345 (1989)

    Google Scholar 

  19. T. Liesenhoff, T. Bende, H. Lenz, T. Seller: Dtsch. Zahnärztl. Z.45, 14 (1990)

    Google Scholar 

  20. M. Frentzen, HJ. Koort: Dtsch. Zahnärztl. Z.46, 443 (1991)

    Google Scholar 

  21. P. Rechmann, T. Hennig, R. Kaufmann: Zahnärztl. Welt101, 150 (1992)

    Google Scholar 

  22. D. Stern, C.A. Puliafito, E.T. Dobi, W.T. Reidy: Arch. Ophmalmol.107, 587 (1989)

    Google Scholar 

  23. M.H. Niemz, E.G. Klancnik, J.F. Bille: Lasers Surg. Med.11, 426 (1991)

    Google Scholar 

  24. M. Frentzen, H.J. Koort, C. Tack: Dtsch. Zahnärztl. Z.45, 199 (1990)

    Google Scholar 

  25. P. Bado, M. Bouvier, J.S. Coe: Opt. Lett.12, 319 (1987)

    Google Scholar 

  26. J.E. Murray: IEEE J. QE-19, 488 (1983)

    Google Scholar 

  27. T.M. Pollak, W.F. Wing, R.J. Gasso, E.P. Chicklis, J.P. Jenssen: IEEE J. QE-18, 159 (1982)

    Google Scholar 

  28. R.C. Weast (ed.):Handbook of Chemistry and Physics (CRC, Boca Raton 1981) Chap. E

    Google Scholar 

  29. W. Lochte-Holtgreven:Plasma Diagnostics (North-Holland, Amsterdam 1968) p. 181

    Google Scholar 

  30. H.R. Griem:Plasma Spectroscopy (McGraw-Hill, New York 1964) p. 496

    Google Scholar 

  31. M.H. Niemz, L. Eisenmann, T. Pioch: Schweiz. Monatsschr. Zahnmed.103, 1252 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemz, M.H. Investigation and spectral analysis of the plasma-induced ablation mechanism of dental hydroxyapatite. Appl. Phys. B 58, 273–281 (1994). https://doi.org/10.1007/BF01082621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01082621

PACS

Navigation