Skip to main content
Log in

Statistical properties of laser-induced fluorescence signals

  • Invited Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We point out the influence of the different noise sources which occur in the detection of the fluorescence signal induced by a laser in an atomic beam. We have developed a theoretical model which takes account of the atomic shot noise, photon noise, laser-frequency noise and a partition noise linked to the imperfect detection of the fluorescence photons. The calculations have been performed for two- and three-level atomic systems. We detail the own contribution of each noise source and give some predictions concerning the value of the fluorescence signal to noise ratio. We determine predominance domains of each noise source which depend on the values of key parameters such as the atomic flux intensity and the laser spectral linewidth. We particularly show that the laser-frequency noise, which induces a coupling between the emission of fluorescence photons by various atoms, leads to a saturation of the S/N ratio for intense atomic fluxes. Moreover, we point out that the optical pumping process associated with a three level atomic system leads to an interesting laser-noise filtering effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.F. Ramsey:Molecular Beams (Clarendon, Oxford 1956) p. 20

    Google Scholar 

  2. N. Dimarcq: Propriétés statistiques de la lumière de fluorescence induite par laser dans un jet atomique. Dissertation, University of Paris, Orsay (1992)

    Google Scholar 

  3. S. Reynaud: Ann. Phys. Fr.8, 315 (1983)

    Google Scholar 

  4. Th. Halswanter, H. Ritsch, J. Cooper, P. Zoller: Phys. Rev. A38, 5652 (1988)

    Google Scholar 

  5. N. Dimarcq, C. Latrasse, M. de Labachelerie: Opt. Commun.105, 263 (1994)

    Google Scholar 

  6. A. Hamel: Propriétés d'un résonateur atomique à jet de césium pompé optiquement et à structure de champ longitudinale. Dissertation, University of Paris, Orsay (1989)

    Google Scholar 

  7. L. Mandel: Opt. Lett.4, 205 (1979)

    Google Scholar 

  8. S. Singh: Opt. Commun.44, 254 (1983)

    Google Scholar 

  9. H.F. Arnoldus, G. Nienhuis: Opt. Acta30, 1573 (1983)

    Google Scholar 

  10. A. Van Der Ziel:Noise (Prentice Hall, Englewood Cliffs 1956) p. 105

    Google Scholar 

  11. A. Papoulis:Probability, Random Variables and Stochastic Processes (MacGraw-Hill, Tokyo 1965) p. 358

    Google Scholar 

  12. N. Dimarcq, C. Audoin: J. Phys. B. (submitted)

  13. N. Dimarcq, V. Giordano, P. Cérez, G. Théobald: IEEE Trans. IM-42, 115 (1993)

    Google Scholar 

  14. G. Théobald, N. Dimarcq, V. Giordano, P. Cérez: Opt. Commun.71, 256 (1989)

    Google Scholar 

  15. V. Giordano, V. Candelier, A. Hamel, C. Audoin, G. Théobald, P. Cérez: Opt. Commun.67, 287 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimarcq, N., Giordano, V. & Cerez, P. Statistical properties of laser-induced fluorescence signals. Appl. Phys. B 59, 135–145 (1994). https://doi.org/10.1007/BF01081164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081164

PACS

Navigation