Skip to main content
Log in

General treatment of mean residence time, clearance, and volume parameters in linear mammillary models with elimination from any compartment

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A general treatment for mean residence time, clearance, and volume parameters in linear mammillary models which includes the possibility of first-order elimination from compartments other than the central compartment is presented. The interrelationship between noncompartmentally derived parameters and compartmentally derived pharmacokinetic microconstants is described. The concept of exit site dependent and exit site independent parameters is introduced in the development of these treatments. Explications of mean residence time in terms of elimination rate, amount eliminated, and amount in the body are presented together with demonstrations of their utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yamaoka, T. Nakagawa, and T. Uno. Statistical moments in pharmacokinetics.J. Pharmacokin. Biopharm. 6:547–558 (1978).

    Article  CAS  Google Scholar 

  2. D. J. Cutler. Theory of the mean absorption time, an adjunct to conventional bioavailability studies.J. Pharm. Pharmacol. 30:476–478 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. H. M. von Hattingberg and D. Brockmeier. In N. Rietbrock and B. Schnieders (eds.),Bioverfügbarkeit von Arzneimitteln, Gustav Fischer, Stuttgart, 1979, pp. 191–209.

    Google Scholar 

  4. H. M. von Hattingberg and D. Brockmeier. In G. Bozler and J. M. van Rossum (eds.),Pharmacokinetics during Drug Development: Data Analysis and Evaluation Techniques, Gustav Fischer, Stuttgart, 1982, pp. 315–323.

    Google Scholar 

  5. S. Riegelman and P. Collier. The application of statistical moment theory to the evaluation ofin vivo dissolution time and absorption time.J. Pharmacokin. Biopharm. 8:509–535 (1980).

    Article  CAS  Google Scholar 

  6. L. Z. Benet and R. L. Galeazzi. Noncompartmental determination of the steady-state volume of distribution.J. Pharm. Sci. 68:1071–1074 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. M. Weiss. Moments of physiological transit time distributions and the time course of drug disposition in the body.J. Math. Biol. 15:305–318 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. D. O. Chanter. The determination of mean residence time using statistical moments: Is it correct?J. Pharmacokin. Biopharm. 13:93–100 (1985).

    Article  CAS  Google Scholar 

  9. E. M. Landaw and D. Katz. Comments on mean residence time determination.J. Pharmacokin. Biopharm. 13:543–547 (1985).

    Article  CAS  Google Scholar 

  10. W. R. Gillespie and P. Veng-Pedersen. The determination of mean residence time using statistical moments: It is correct.J. Pharmacokin. Biopharm. 13:549–554 (1985).

    Article  CAS  Google Scholar 

  11. L. Z. Benet. Mean residence time in the body versus mean residence time in the central compartment.J. Pharmacokin. Biopharm. 13:555–558 (1985).

    Article  CAS  Google Scholar 

  12. D. J. Cutler. Definition of mean residence times in pharmacokinetics.Biopharm. Drug Dispos. 8:87–97 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. N. A. Lassen and W. Perl.Tracer Kinetic Methods in Medical Physiology, Raven Press, New York, 1979.

    Google Scholar 

  14. P. Veng-Pedersen and W. Gillespie. Mean residence time in peripheral tissue: A linear disposition parameter useful for evaluating a drug's tissue distribution.J. Pharmacokin. Biopharm. 12:535–543 (1984).

    Article  CAS  Google Scholar 

  15. P. Veng-Pedersen and W. Gillespie. The mean residence time of drugs in the systemic circulation.J. Pharm. Sci. 74:791–792 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. P. Veng-Pedersen and W. R. Gillespie. Single pass mean residence time in peripheral tissues: A distribution parameter intrinsic to the tissue affinity of a drug.J. Pharm. Sci. 75:1119–1126 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. P. P. LeBlanc and M. LeBel. Drug distribution in the body: I. Estimation of the rate and extent of distribution using statistical moments.J. Pharm. Belg. 41:69–74 (1986).

    CAS  PubMed  Google Scholar 

  18. P. P. LeBlanc and M. LeBel. Drug distribution in the body: II. Estimation of drug concentration in small anatomic compartments.J. Pharm. Belg. 41:75–82 (1986).

    CAS  PubMed  Google Scholar 

  19. P. J. McNamara, J. C. Fleishaker, and T. L. Hayden. Mean residence time in peripheral tissues.J. Pharmacokin. Biopharm. 15:439–450 (1987).

    Article  CAS  Google Scholar 

  20. L. Z. Benet. General treatment of linear mammillary models with elimination from any. compartment as used in pharmacokinetics.J. Pharm. Sci. 61:536–540 (1972).

    Article  CAS  PubMed  Google Scholar 

  21. K. B. Bischoff and R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57:1346–1351 (1968).

    Article  CAS  PubMed  Google Scholar 

  22. M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharmacokin. Biopharm. 1:123–135 (1973).

    Article  CAS  Google Scholar 

  23. M. Weiss. Residence time and accumulation of drugs in the body.Int. J. Clin. Pharmacol. Ther. Toxicol. 19:82–85 (1981).

    CAS  PubMed  Google Scholar 

  24. J. J. DiStefano III. Noncompartmental vs. compartmental analysis: Some bases for choice.Am. J. Physiol. 243:R1-R6 (1982).

    PubMed  Google Scholar 

  25. E. A. Nüesch. Noncompartmental approach in pharmacokinetics using moments.Drug Metab. Rev. 15:103–131 (1984).

    Article  PubMed  Google Scholar 

  26. J. J. DiStefano III and E. M. Landaw. Multiexponential, multicompartmental, and non-compartmental modeling. I. Methodological limitation and physiological interpretations.Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol.15): R651-R664 (1984).

    PubMed  Google Scholar 

  27. C. Cobelli and G. Toffolo. Compartmental and noncompartmental models as candidate classes for kinetic modeling, theory and computational aspects. In J. Eisenfeld and C. Delisi (eds.),Mathematics and Computers in Biomedical Applications, Elsevier, Amsterdam, 1985, pp. 219–236.

    Google Scholar 

  28. S. L. Beal. Some clarifications regarding moments of residence times with pharmacokinetic models.J. Pharmacokin. Biopharm. 15:75–92 (1987).

    Article  CAS  Google Scholar 

  29. L. Z. Benet and R. A. Ronfeld. Volume terms in pharmacokinetics.J. Pharm. Sci. 58:639–641 (1969).

    Article  CAS  PubMed  Google Scholar 

  30. P. S. Collier. Some considerations on the estimation of steady state apparent volume of distribution and the relationships between volume terms.J. Pharmacokin. Biopharm. 11:93–105 (1983).

    Article  CAS  Google Scholar 

  31. E. Nakashima and L. Z. Benet. Simulation studies of mean residence time for drugs with peripheral elimination: Application to nitroglycerin.J. Pharm. Sci. 76:S106 (1987) (Abstract).

    Article  Google Scholar 

  32. W. J. Jusko and M. Gibaldi, Effects of change in elimination on various parameters of the two-compartment open model.J. Pharm. Sci. 61:1270–1273 (1972).

    Article  CAS  PubMed  Google Scholar 

  33. L. Z. Benet, Pharmacokinetic parameters: Which are necessary to define a drug substance?Eur. J. Resp. Dis. 65(Suppl. 134):45–61 (1984).

    Google Scholar 

  34. M. Gibaldi, R. Nagashima, and G. Levy, Relationship between drug concentration in plasma or serum and amount of drug in the body.J. Pharm. Sci. 58:193–197 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH grants GM 26691 and HL 32243.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakashima, E., Benet, L.Z. General treatment of mean residence time, clearance, and volume parameters in linear mammillary models with elimination from any compartment. Journal of Pharmacokinetics and Biopharmaceutics 16, 475–492 (1988). https://doi.org/10.1007/BF01062381

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062381

Key words

Navigation