Skip to main content
Log in

Meromorphic structure of the Mellin transforms and short-distance behavior of correlation integrals

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The short-distance behavior of the measure of a sphere and of the correlation integral is determined, in the case of disconnected repellers, by scaling laws whose corrections are oscillating functions, periodic or aperiodic, depending on exact or approximate self-similarity of the measure. The Mellin transforms prove to be the correct analytic tool in order to investigate these corrections to scaling. It has been previously proved that they are meromorphic for linear Cantor sets and that the leading pole gives the correlation dimension in agreement with the results of the thermodynamic formalism. Here we show that the residues of these poles can also be computed to any desired accuracy with simple algorithms and that the knowledge of the singularity spectrum of the Mellin transforms provides the Fourier spectrum of the scaling correction for the self-similar measure and that it reproduces the damped oscillations in the generic case. The method applies to the nonlinear repellers such as the disconnected Julia sets by using an approximation theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. N. Lorenz, Deterministic nonperiodic flow,J. Atmos. Sci. 20:130–141 (1963).

    Google Scholar 

  2. M. Hénon, A two dimensional mapping with a strange attractor,Commun. Math. Phys. 50:69–77 (1976).

    Google Scholar 

  3. M. Widom, D. Bensimon, L. P. Kadanoff, and S. J. Shenker, Strange objects in the complex plane,J. Stat. Phys. 32:443 (1983).

    Google Scholar 

  4. D. Ruelle, Measures describing a turbulent flow,N. Y. Acad. Sci. 357:1–9 (1980).

    Google Scholar 

  5. D. Ruelle,Chaotic Evolution and Strange Attractors (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  6. D. Ruelle, Repellers for real analytic maps,Ergodic Theory Dynam. Syst. 2:99–107 (1982).

    Google Scholar 

  7. H. Brolin, Invariant sets under iteration of rational functions,Arch. Math. 6:103–144 (1965).

    Google Scholar 

  8. D. Ruelle, Thermodynamical formalism,Encyclopedia of Mathematics and its Applications, Vol. 5 (Addison-Wesley, Reading, Massachusetts, 1978).

    Google Scholar 

  9. P. Collet, J. L. Lebowitz, and A. Porzio, The dimension spectrum of some dynamical systems,J. Stat. Phys. 47:609–644 (1987).

    Google Scholar 

  10. E. Vul, Y. Sinai, and K. Khanin, Feigenbaum universality and the thermodynamic formalism,Russ. Math. Surv. 39(3):1–40 (1984).

    Google Scholar 

  11. S. Vaienti, Generalized spectra for the dimensions of strange sets,J. Phys. A 21:2313–2320 (1988).

    Google Scholar 

  12. G. Servizi, G. Turchetti, and S. Vaienti, Generalized dynamical variables and measures for the Julia sets,Nuovo Cimento B 101:285 (1988).

    Google Scholar 

  13. G. Turchetti and S. Vaienti, Analytical estimates of fractal and dynamical properties of one dimensional expanding maps,Phys. Lett. A 128:343–348 (1988).

    Google Scholar 

  14. S. Vaienti, Some properties of mixing repellers,J. Phys. A 21:2023–2043 (1988).

    Google Scholar 

  15. R. Badii and A. Politi, Intrinsic oscillations in measuring the fractal dimension,Phys. Lett. A 104:303–305 (1984).

    Google Scholar 

  16. L. A. Smith, J. D. Fournier, and L. A. Spiegel, Lacunarity and intermittency in fluid turbulence,Phys. Lett. A 114:465–468 (1986).

    Google Scholar 

  17. D. Bessis, G. Servizi, G. Turchetti, and S. Vaienti, Mellin transforms and correlation dimensions,Phys. Lett. A 119:345–347 (1987).

    Google Scholar 

  18. D. Bessis, J. D. Fournier, G. Servizi, G. Turchetti, and S. Vaienti, Mellin transforms of correlation integrals and generalized dimensions of strange sets,Phys. Rev. A 36:920–928 (1987).

    Google Scholar 

  19. D. Bessis, J. S. Jeronimo, and P. Moussa, Mellin transform associated with Julia sets and physical applications,J. Stat. Phys. 34:75–110 (1984).

    Google Scholar 

  20. J. D. Fournier, G. Turchetti, and S. Vaienti, Singularity spectrum of the generalized energy integrals,Phys. Lett. A 140:331 (1989).

    Google Scholar 

  21. E. Orlandini, G. Servizi, M. C. Tesi, and G. Turchetti, Singularities of the energy integrals and scaling laws of the dimension spectra,Nuovo Cimento, to appear.

  22. L. S. Young, Dimension, entropy and Lyapunov exponents,Ergodic Theory Dynam. Syst. 2:109–124 (1982).

    Google Scholar 

  23. T. Bedford and A. Fisher, Analogues of the Lebesgue density theorem for fractal sets of real and integers, University of Delft, preprint (1990).

  24. T. C. Hasley, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. Shraiman, Fractal measures and their singularities: The characterization of strange sets,Phys. Rev. A 33:1141–1151 (1986).

    Google Scholar 

  25. M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals,Proc. R. Soc. Lond. A 399:243–275 (1985).

    Google Scholar 

  26. J. H. Elton, Ergodic theorem for iterated maps,Ergodic Theory Dynam. Syst. 7:481–488 (1987).

    Google Scholar 

  27. K. J. Falconer,The Geometry of Fractal Sets (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlandini, E., Tesi, M.C. & Turchetti, G. Meromorphic structure of the Mellin transforms and short-distance behavior of correlation integrals. J Stat Phys 66, 515–533 (1992). https://doi.org/10.1007/BF01060078

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060078

Key words

Navigation