Skip to main content
Log in

Susceptibility of infant mice to F5 (K99)E. coli infection: Differences in glycosyltransferase activities in intestinal mucosa of inbred CBA and DBA/2 strains

  • Glycosylation and Disease Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

EnterotoxigenicEscherichia coli (ETEC) strains expressing F5 (K99) fimbriae cause diarrhoea in the young animal through adhesion to specific sialoglycolipids of the small intestine surface. We studied here an infant mouse diarrhoea model, as CBA infant mice are susceptible to F5-positive ETEC infection, whereas DBA/2 ones are resistant. In an attempt to determine an enzymatic basis for susceptibility and resistance, we investigated the intestine ganglioside pattern in relation to the activity of glycosyltransferases responsible for the globo- and ganglio-series. We observed that the intestine of susceptible CBA infant mice displayed a characteristic sialoglycolipid pattern containing mainly the F5 receptors. The two murine strains differed in the relative activities of galactosyltransferases (GbOse3Cer and GM1 synthases),N-acetylgalactosylaminyltransferases (GA2 and GM2 synthases) and sialyltransferases (GM3 and GD3 synthases). An elevated GM3-synthase activity was observed in the intestine of susceptible CBA infant mice, at the age of high susceptibility. Hence, we conclude that the marked specificity of mouse type correlated with susceptibility and resistance to F5-positive ETEC infection which could be controlled through the regulation of glycosyltransferase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NeuAc:

N-acetylneuraminic acid

NeuGc:

N-glycolylneuraminic acid

Glc:

glucose

GalNAc:

N-acetylgalactosamine

Gal:

galactose

Car:

ceramide

LacCer:

lactosylceramide (Galß-4Glcß1-1Cer)

GA2:

asialo-GM2 (GgOse3Cer)

GA1:

asialo-GM1 (GgOse4Cer)

NeuAc/NeuGc-GMla:

II3 NeuAc/NeuGc-GgOse4Cer

NeuAc/NeuGc-GM1a:

IV3 NeuAc/NeuGc-GgOse4Cer

NeuAc/NeuGc-GM2:

II3 NeuAc/neuGc-GgOse3Cer

NeuAc/NeuGc-GM3, II3 NeuAc/NeuGc-LacCer; NeuAc/NeuGc-GD1a, IV3 NeuAc/NeuGc, II3 NeuAc/NeuGc-GgOse4Cer; NeuAc/NeuGc-GD1b:

II3 (NeuAc/NeuGc)2-GgOse4Cer

NeuAc/NeuGc-GD1c:

IV3 (NeuAc/NeuGc)2-GgOse4Cer

NeuAc/NeuGc-GD2, II3 (NeuAc/NeuGc)2-GgOse3Cer; NeuAc/NeuGc-GD3, II3 (NeuAc/NeuGc)2-Lac Cer; NeuAc/NeuGcGT1a:

IV3 (NeuAc/NeuGc)2, II3 NeuAc/NeuGc-GgOse4Cer

NeuAc/neuGc-GT1b:

IV3 NeuAc/NeuGc, II3 (NeuAc/NeuGc)2-GgOse4Cer

NeuAc/NeuGc-GT1c:

II3 (NeuAc/NeuGc)3-GgOse4Cer; NeuAc/NeuGc-GT2, II3 (NeuAc/NeuGc)3-GgOse3Cer

NeuAc/NeuGc-GT3:

II3 (NeuAc/NeuGc)3-Lac Cer

NeuAc/NeuGc-GQ1b:

IV3 (NeuAc/NeuGc)2, II3 (NeuAc/NeuGc)2-GgOse4Cer

NeuAc/NeuGc-GQ1c:

IV3 NeuAc/NeuGc, II3 (NeuAc/NeuGc)3-GgOse4Cer

NeuAc/NeuGc-GP1c:

IV3 (NeuAc/NeuGc)2, II3 (NeuAc/NeuGc)3-GgOse4Cer

GD, GT and GQ:

di-, tri- and tetra-sialoglangliosides. NeuGc-SPG, IV3 NeuGc-nLcOse4Cer. Glycosyltransferases assayed in this work areN-acetylgalactosaminyltransferases

UDP-GalNAc:

lactosylceramide β1-4N-acetylgalactosaminyltransferase or GA2 synthase (EC 2.4.1-) and UDP-GalNAc:(N-acetylneuraminyl)-lactosylceramide β1-4N-acetylgalactosaminyltransferase or GM2 synthase (EC 2.4.1.92)

sialyltransferases:

CMP-N-acetylneuraminate: lactosylceramide α2–3 sialyltransferase (sialyltransferases I and IV) or GM3 synthase (EC 2.4.99.-) and CMP-N-acetylneuraminate:(N-acetylneuraminyl) lactosylceramide α2-8 sialyltransferase (sialyltransferase II) or GD3 synthase (EC 24.99.8)

galactosyltransferases:

UDP-galactose:N-acetylgalactosaminyl-(N-acetylneuraminyl) lactosylceramide β1-3 galactosyltransferase (galactosyltransferase II) or GM1a synthase (EC 2.4.1.62) and UDP-galactose:lactosylceramide α1-4 galactosyltransferase or GbOse3Cer synthase (EC 2.4.1-)

References

  1. Kyogashima M, Ginsburg V, Krivan H (1989)Arch Biochem Biophys 270: 391–97.

    Google Scholar 

  2. Ono E, Abe K, Nakazawa M, Naiki M (1989)Infect Immunol 57: 907–11.

    Google Scholar 

  3. Teneberg S, Willemsen P, De Graaf FK, Karlsson KA (1990)FEBS Lett 263: 10–14.

    Google Scholar 

  4. Seignole D, Mouricout M, Duval-Iflah Y, Quintard B, Julien R (1991)J Gen Microbiol 137: 1591–1601.

    Google Scholar 

  5. Mouricout M, Julien R (1987)Infect Immunol 55: 1216–23.

    Google Scholar 

  6. Lindahl M, Carlsted I (1990)J Gen Microbiol 136: 1609–14.

    Google Scholar 

  7. Teneberg S, Willemsen P, De Graaf FK, Stenhagen G, Pimlott W, Jowall PA, Karlsson KA (1994)J Biochem 116: 560–74.

    Google Scholar 

  8. Bertin A (1985)J Gen Microbiol 131: 3037–45.

    Google Scholar 

  9. Newsome P, Burgess MN, Burgess MR, Coney K, Goddard M, Morris JA (1987)J Med Microbiol 23: 19–28.

    Google Scholar 

  10. Duchet-Suchaux M (1988)Infect Immunol 56: 1364–70.

    Google Scholar 

  11. Duchet-Suchaux M, Le Maître C, Bertin A (1990)J Med Microbiol 31: 185–90.

    Google Scholar 

  12. Basu M, De T, Das K, Kyle J, Chon H, Shaeper R, Basu S (1987)Methods Enzymol 138: 575–607.

    Google Scholar 

  13. Pohlentz G, Klein D, Schwarzmann G, Schmitz D, Sandhoff K (1988)Proc Natl Acad Sci USA 85: 7044–48.

    Google Scholar 

  14. Schüz-Henninger R, Ullmer E, Prinz C, Decker K (1989)Eur J Biochem 185: 327–30.

    Google Scholar 

  15. Mookerjea S, Hunt D, Nadkarni S, Ratman S, Collins-Francis J, Nagpurkar A (1990)Int J Biochem Biophys 27: 446–51.

    Google Scholar 

  16. Hongo T, Tomoda J, Mizuno M, Maga T, Tsuji T (1991)Acta Med Okayama 45: 301–8.

    Google Scholar 

  17. Ratnam S, Nagpurka A, Mookerja S (1986)Biochem Cell Biol 65: 183–87.

    Google Scholar 

  18. Gu X, Gu T, Yu R (1990)Anal Biochem 185: 151–55

    Google Scholar 

  19. Svennerholm L (1957)Biochim Biophys Acta 24: 604–11.

    Google Scholar 

  20. Rao P, Pattabiraman T (1989)Anal Biochem 181: 18–22.

    Google Scholar 

  21. Busam K, Decker K (1986)Eur J Biochem 160: 23–30.

    Google Scholar 

  22. Iber H, Zacharias C, Sandhoff K (1992)Glycobiology 2: 137–42.

    Google Scholar 

  23. Yamakawa T, Suzuki A, Hashimoto Y (1986)Chem Phys Lipids 42: 75–90.

    Google Scholar 

  24. Klein JR, Mosley RL, Kaiserlian D (1990)Proc Soc Exp Biol Med 195: 329–34.

    Google Scholar 

  25. Biol MC, Martin A, Richard M, Louisot P (1987)Pediatr Res 22: 250–56.

    Google Scholar 

  26. Nakamura Y, Hashimoto Y, yamakawa T, Susuki A (1988)J Biochem 103: 396–98.

    Google Scholar 

  27. Duchet-Suchaux M, Menanteau P, Le Roux H, Elsen JM, Lechopier P (1992)Microb Pathogen 13: 157–60.

    Google Scholar 

  28. Bouhours D, Bouhours JF (1991)J Biol Chem 266: 12944–48.

    Google Scholar 

  29. Kraml J, Kolinska J, Kadelcova L, Zakostecka M, Zdenek L (1984)FEBS Lett 172: 25–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grange, P.A., Mouricout, M. Susceptibility of infant mice to F5 (K99)E. coli infection: Differences in glycosyltransferase activities in intestinal mucosa of inbred CBA and DBA/2 strains. Glycoconjugate J 13, 45–52 (1996). https://doi.org/10.1007/BF01049678

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049678

Keywords

Navigation