Skip to main content
Log in

Extremal holomorphic diffusion processes

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Extremal holomorphic diffusion processes are studied. We formulate a stochastic control problem for the extremal function of a set. We then characterize the extremal holomorphic diffusion processes as the optimal diffusion processes of the problem. By making use of SDE representation for the processes, we show that they move on an integral submanifold of the coefficients vector fields of the SDE passing through the starting point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bedford, E. and Burns, D.: ‘Holomorphic mapping of annuli inC n and the related extremal function’,Ann. Sci. Nor. Sup. Pisa VI (1979), 381–414.

    Google Scholar 

  2. Bedford, E. and Kalka, M.: ‘Foliation and complex Monge-Ampère equations’,Pure and Appl. Math. XXX (1977), 543–571.

    Google Scholar 

  3. Bedford, E. and Taylor, B. A.: ‘Variational properties of complex Monge-Ampère equation. II’.Intrinsic Norms 101 (1979), 1131–1166.

    Google Scholar 

  4. Bedford, E. and Taylor, B. A.: ‘A new capacity for plurisubharmonic functions’,Acta Math. 149 (1982), 1–40.

    Google Scholar 

  5. Cegrell, U.: ‘Capacities and extremal plurisubharmonic functions on subsets ofC n’,Ark. Mat. 18 (1980), 199–206.

    Google Scholar 

  6. Debiard, A. and Gaveau, B.: ‘Méthod de contrôl optimal en analyse complexe. IV. Applications aux algèbres de fonctions analytiques’,Lecture Note in Math. 798 (1980), 109–140.

    Google Scholar 

  7. Fukushima, N. and Okada, M.: ‘On Dirichlet forms for plurisubharmonic functions’,Acta Math. 159 (1987), 171–213.

    Google Scholar 

  8. Fukushima, M. and Okada, M.: ‘On conformal martingale diffusions and pluripolar sets’,J. Func. Analysis 55 (1984), 377–388.

    Google Scholar 

  9. Ikeda, N. and Watanabe, S.:Stochastic Differential Equations and Diffusion Processes, North Holland-Kodansha, Amsterdam and Tokyo (1981).

    Google Scholar 

  10. Krylov, N. V.:Controlled Diffusion Processes, Springer-Verlag, New York, Heidelberg, Berlin (1980).

    Google Scholar 

  11. Kunita, H.:Stochastic Flows and Stochastic Flows and Stochastic Differential Equations, Cambridge University Press (1990).

  12. Lions, P. L.: ‘Sur les équations de Monge-Ampère 1’,Manuscripta Math. 41 (1983), 1–44.

    Google Scholar 

  13. Nirenberg, L.:A Complex Frobenius Theorem, Lecture Notes, Princeton, New Jersey: Institute for Advanced StudyI (1957), I.172–189.

    Google Scholar 

  14. Sommer, F.: ‘Komplex-analytische Blatterung reeler Mannigfaltigkeiten imC n’,Math. Ann. 136 (1958), 111–133.

    Google Scholar 

  15. Sussmann, H. J.: ‘Orbits of families of vector fields and integrability of distributions’,Trans. A.M.S. 180 (1973), 171–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, H. Extremal holomorphic diffusion processes. Potential Anal 2, 371–386 (1993). https://doi.org/10.1007/BF01049395

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049395

Mathematics Subject Classifications (1991)

Key words

Navigation