Skip to main content
Log in

Subcellular site of the biosynthesis ofO-acetylated sialic acids in bovine submandibular gland

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Bovine submandibular glands were homogenized and fractionated under conditions which yielded subcellular fragments from mainly one cell type, the mucous acinar cell, as judged by morphological analysis of the glands before and after homogenization. The majorN-acetylneuraminate-9(7)-O-acetyltransferase activity was detected in the cytosolic fraction, a result supported by the high specific radioactivity of free sialic acids isolated after [14C]acetate-labelling experiments. Separation of membranes on a Ficoll density gradient gave six fractions which were analyzed biochemically and morphologically. The particulate activities of acetyltransferase and sialyltransferase were found in fractions containing smooth and mitochondrial membranes. MembraneO-acetyl sialic acids were present at the highest levels in these fractions and also had the highest specific radioactivity after [14C]acetate-labelling experiments. Significant amounts of theO-acetyltransferase activity also occur in the cytosol and are consistent with a model ofO-acetyl sialic acid biosynthesis involving both cytosolic and smooth membrane sites ofO-acetylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabezas JA (1973) Rev Esp Fisiol 29:307–22.

    Google Scholar 

  2. Kamerling JP, Vliegenthart JFG, Versluis C, Schauer R (1975) Carbohydr Res 41:7–17.

    Google Scholar 

  3. Schauer R (1978) Methods Enzymol 50:64–89.

    Google Scholar 

  4. Schauer R (1987) Methods Enzymol 138:132–61.

    Google Scholar 

  5. Schauer R (1982) Adv Carbohydr Chem Biochem 40:131–234.

    Google Scholar 

  6. Corfield AP, Schauer R (1982) in Cell Biology Monographs, Vol. 10, ed. Schauer R, Springer, New York, p 5–50.

    Google Scholar 

  7. Schauer R (1987) Methods Enzymol 138:611–26.

    Google Scholar 

  8. Rogers GN, Herrler G, Paulson JC, Klenk H-D (1986) J Biol Chem 261:5947–51.

    Google Scholar 

  9. Corfield AP, Ferreira do Amaral C, Wember M, Schauer R (1976) Eur J Biochem 68:597–610.

    Google Scholar 

  10. Schauer R (1970) Hoppe Seylers Z Physiol Chem 351:595–602.

    Google Scholar 

  11. Schauer R, Wember M (1971) Hoppe Seylers Z Physiol Chem 352:1282–90.

    Google Scholar 

  12. Schauer R, Buscher H-P, Casals-Stenzel J (1974) Biochem Soc Symp. 40:87–116.

    Google Scholar 

  13. Diaz S, Varki A (1985) Anal Biochem 150:32–46.

    Google Scholar 

  14. Varki A, Diaz S (1985) J Biol Chem 260:6600–8.

    Google Scholar 

  15. Higa HH, Varki A (1987) Proc 9th Int Symp Glycoconjugates, eds. Montreuil J, Verbert A, Spik G, Fournet B, Secretariat, Lille, E 85.

    Google Scholar 

  16. Tettamanti G, Pigman WW (1968) Arch Biochem Biophys 124:41–50.

    Google Scholar 

  17. Veh RW, Corfield AP, Schauer R, Andres KH (1979) Proc Vth Int Symp Glycoconjugates, eds. Schauer R, Boer P, Buddecke E, Kramer MF, Vliegenthart JFG, Wiegandt H, Thieme, Stuttgart, p 191–94.

    Google Scholar 

  18. Schauer R, Buscher H-P (1974) Biochim Biophys Acta 338:369–73.

    Google Scholar 

  19. Schauer R, Wember M, Ferreira do Amaral C (1972) Hoppe Seylers Z Physiol Chem 353:883–86.

    Google Scholar 

  20. Richardson KC, Jarett L, Finke EH (1960) Stain Technol 35:313–23.

    Google Scholar 

  21. Watson ML (1958) J Biochem Biophys Cytol 4:727.

    Google Scholar 

  22. Reynolds ES (1963) J Cell Biol 17:208–12.

    Google Scholar 

  23. Buscher H-P, Casals-Stenzel J, Schauer R, Mestres-Ventura P (1977) Eur J Biochem 77:297–310.

    Google Scholar 

  24. Schauer R, Wember M (1973) Hoppe Seylers Z Physiol Chem 354:1405–14.

    Google Scholar 

  25. Casals-Stenzel J, Buscher H-P, Schauer R (1975) Anal Biochem 65:507–24.

    Google Scholar 

  26. Schneider WC (1957) Methods Enzymol 3:680–84.

    Google Scholar 

  27. Gornall AG, Bardawill CJ, David MM (1949) J Biol Chem 177:751–66.

    Google Scholar 

  28. Decker K (1985) in Methods Enzymatic Analysis, 3rd edn., vol 7, ed. Bergmeyer HU, Verlag Chemie, Weinheim, p 186–93.

    Google Scholar 

  29. Ziegler H (1927) Z Anat Entwicklungsgesch 82:73–121.

    Google Scholar 

  30. Shakleford JM, Wilborn WH (1970) Amer J Anat 127:259–80.

    Google Scholar 

  31. Tandler B (1963) J Ultrastruct Res 9:65–75.

    Google Scholar 

  32. Lawford GR, Schachter H (1967) Can J Biochem 45:507–22.

    Google Scholar 

  33. Rossignol B, Herman G, Clauser H (1969) Biochem Biophys Res Commun 34:111–19.

    Google Scholar 

  34. Schachter H (1978) in The Glycoconjugates, Vol II, eds. Horowitz MI, Pigman W, Academic Press, New York, p 88–181.

    Google Scholar 

  35. Roth J, Burger EG (1982) J Cell Biol 93:223–27.

    Google Scholar 

  36. Varki A, Diaz S (1984) Fed Proc 43:1647.

    Google Scholar 

  37. Delesse MA (1847) C R Acad Sci (Paris) 25:544–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauer, R., Casals-stenzel, J., Corfield, A.P. et al. Subcellular site of the biosynthesis ofO-acetylated sialic acids in bovine submandibular gland. Glycoconjugate J 5, 257–270 (1988). https://doi.org/10.1007/BF01049086

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049086

Key words

Enzymes

Navigation